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ABSTRACT 

The invertibility of finite state machines is considered in detail. Necessary 

and sufficient conditions for the general class, a s  well as  some important sub- 

classes, of finite state machines to be invertible with delay L (called INV #L if 

L is the least delay for which an inverse exists) are  given. Some structural 

properties of INV #L strongly connected machines with input and output sets of 

common order are derived. It is shown that every state on such a machine 

allows the same number of output sequences of length L or  longer. Further- 

more, it is shown that every set of final states, reachable from some known 

initial state with common output sequence of length L o r  longer, has identical 

cardinality . 

The results of some previous research are related to this work. The 

concepts of information losslessness (IL) and information losslessness of finite 

order as established by Huffman are  considered and related to invertibility. 

A necessary and sufficient condition for information losslessness in the 

case of strongly connected machines with equal order input and output sets is 

given. 

A new type of state equivalence is presented, viz, output equivalence. It 

is shown that the output equivalence relation has some particularly interest 

consequences in the casee of INV #L and IL machines. A state re 

I W  #L machines based on output equivalence preserves invertibility, although 

not necessarily inverse delay. Although state reduced PL machines do not, in 



general, retain the IL property, it is shown that losslessness is preserved for 

the class of strongly connected machines. Several other structure preserving 

properties inherent in the state reduction of output equivalent states are 

demonstrated. 

Invertibility and losslessness of the class of finite input memory machines 

is considered. The implications of INV #L and IL characteristics on the output 

function which defines output response are investigated. 

for output functions of non-degenerate finite input memory machines to yield 

INV #L and IL behavior are given. 

Sufficient conditions 

Finite output memory machines and properties related to invertibility a re  

examined. It is concluded that a non-degenerate finite output memory machine 

is invertible with zero delay o r  is not invertible with any delay. 

A particular problem concerning the invertibility of linear finite state 

machines is defined and solved. The result is a necessaryand sufficient con: 

dition for the existence of a feedforward inverse for a general linear finite 

state machine, thereby extending an earlier result of Massey and Sain. 

procedure for the construction of feedforward inverses with minimal delay for 

linear finite state machines is also given. 

A 

Upper bounds on inverse delay for an N state machine are investigated. It 

is shown for a certain restricted class of binary finite state machines th 

upper bound on inverse delay grows only linearly with N. 

;s d s o  shown that there exists an N state, INV #L machine with L = N(N-1)/2 

for every N. The construction, however, requires a very large out 

large values of N. 

By const 
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CHAPTER I 

INTRODUCTION AND SOME PRELIMINARY RESULTS 

There are, in many fields of engineering, a number of physical systems 

which can be synthesized o r  analyzed as finite state machines. These systems 

are  characterized by finite input alphabets, finite output alphabets and a finite 

set of states or conditions which the system may assume. 

behavior and response of these devices are specified by two relations; 

which defines the state behavior and one which specifies the output response. 

Finite state machines may serve as models of digital computers, digital com- 

munication systems, numerical process controllers and other important 

physical systems. Hence, the study of finite state machines is not simply of 

academic interest, but has significant engineering application. 

In addition, the 

one 

In the study of the behavior of physical systems certain properties and 

characteristics are of paramount importance. 

stability, controllability, observability and invertibility. It is the last of these 

Among these properties are 

characteristics which is to be considered in detail here. 

Let us  formally define the machine model which will be considered in our 

work. 

Definition 1.1: 

M =< S, X, Y, 6 , A> , where S, X and Y are  finite state, input and output seis 

A finite state machine (FSM), M, is a five-tuple, 

respectively and 6 and A are mappings such that: 

1 
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6 :  sxx-s and A :  sxx-y 

or  such that from a time viewpoint: 

(s (t), x (t)) = s (t+l) and A (s (t), x (t)) = y (t) for  t = 0, 1, 2, @ . 
We will also refer to FSM's as sequentid machines or simply as machines. 

No confusion should result since only FSM's will be considered in this work. 

Systems such as described by Definition 1.1 may be represented by 

several techniques. Two of these techniques are the state diagram and the 

state transition table. Examples of both sequential machine representations 

a re  given in Figure 1.1. X a  b 

54 

s5 

(a) STATE TRANSITION DIAGRAM @) STATE TRANSITION TABLE 

FIGURE 1.1 - TWO REPRESENTATIONS O F  A FINITE STATE MACHINE, M 

In the example of Figure 1.1 we have 

and the orders of the state, input and output sets are five, two and three 

res pe c tivel y . 
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It is convenient to extend the definitions of input and output sets. Let Xk 

be the finite set of all length k sequences of elements of X. Then define X* 

from 

x* =xo uxl ux2 u 

0 where X is the set containing only 

a, 
u xi 0 .  e. . .  = 

i = O  

the sequence of length zero, i. e., only the 

empty tape, A .  

elements of Y and define 

Similarly let Yk be the finite set of all length k sequences of 

a, 
y*=yO u y l  u y 2  u ...... = u yi ~ 

i = O  

Further let us  extend the output and next state mappings in a corresponding 

way. Let A* be a sequence mapping such that, for any n 1: 0, A *  (Si, xn) = yn, 

xn t Xn, yn E Yn where yn is the length n sequence of output letters produced 

from state Si by the input sequence xn. Let 6 * be a state mapping such that 

b* (si, xn) = sf where sf is the final state reached from the initial state si by 

the input sequence xn. In the work which follows the I*r symbol will be omitted 

in  both output and state mappings since the superscript n applied to the input 

sequence xn in the mappings, h(si, xn) and Q (si, xn) adequately identifies 

the output sequence and final state. For example in the sequential machine of 

Figure 1.1 if x6 = x1 x2 x3 x4 x5 x6 = babbba, then h(s1, x6) = 

6 B (SI, x ) = s4. 

Let us  now define an inverse finite state machine. 

Definition 1.2:  An FSM M' =<S' , X' Y' 

respect to state so e S for an FSM M =<S, X, Y, 

'> is a delay L inverse with 

> i f X ' 2  Y andY' 
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1 
and if there exists so e S' such that for every n 2 0 ,  for every xn c Xn and 

for every uL XL we have 

A' (so', A (so, xn UL)) = a L  xn 

for some arbitrary aL E YtL* 

We observe that, if M has a delay L inverse with respect to some state, 

then this clearly implies that M has a delay L+i inverse with respect to that 

state for every i 2 0. W e  observe also that Definition 1.2 considers an inverse 

in terms of a particular initial state. The existence of an inverse with respect 

to one state does not guarantee that an inverse exists with respect to every 

state in S. 

reachable from sj  if there exists x" for some n 2 0 such that d (sj, xn) = si, 

then we have the following result. 

If, however, for any two states, Si and S j ,  we define S i  to be 

Theorem 1.1: If an FSM, M, has a delay L inverse with respect to so, ,then 

M has a delay L inverse with respect to every state reachable from SO. 

Proof: 

M =<S, X, Y, 6 , A  > with respect to SO. Let si be any state .reachable 

from so. It follows that there exists a n  E x" for some integer, n, such that 

b (so, an)  = si. Let xm be any length m input sequence. By Definition 1.2, 

there exists so' (E S' such that 

Let M' = < S', X', Y', d ', A ' >  be a delay L inverse for 

A' (SO', h (SO, an xm uL)) = L an xm for some 

for every uL ExL. Let si' = 6 '  (SO', (SO, an)) .  It f o ~ ~ o w s  that 
' A' (si , A(si, xm uL))  = flL xm where flL is the sequence con- 

taining the last L letters of aL an. Since 

trarily, it is concluded that M' is a delay L inverse for M with respect to state 

and uL may be selected arbi- 



5 

We turn now to the problems of testing sequential machines for inverse 

existence, of determining inverse delay and of constructing an inverse when it 

exists, Our next result provides a necessary and sufficient condition for the 

existence for a delay L inverse and contains an implicit procedure for inverse 

construction. The construction procedure employed is similar to one given by 

Even' but is  more general in that it is applicable to the general class of all 

machines conforming to Definition 1 1. Certain modifications of Even's pro- 

cedure a re  necessary in the case of machines for which the next state map, 6 ,  

is  not onto. 

Theorem 1.2:  An FSM M has a delay L inverse with respect to so 6 S if and 

onlyifforeveryx" and un EX" ;  n = l ,  2, 3 , . . * * *  ; xn # un =3 

L L  X . h(so, xn vL) # A (so, un wL) for every vL and w 

Proof: Let us first consider the "only if" portion of the theorem. Suppose 

that a machine M' is a delay L inverse for machine M with respect to state SO. 

Suppose further that there exists an # bn E Xn and cL and dL € XL such that 

(SO, an cL) = h (so, bn dL). By Definition 1.2 there exists so' e S' such 

( s o ,  I ~ ( s ~ ,  an c ) )  L = L n  01 a and A' (sop 1 h(so, b n L  d ) ) =  that 

some aL and BL eYIL. But by the assumption that 

L A (so, bn d ) it follows that aL an = 8 bn which is possible only if an = bn . 
(so, an cL) = 

Hence, by contradiction, necessity is shown. 

$3. Even, "On Information Lossless Automata of Finite Order", IEEE 
Transactions on Electronic Computers, Vol. EC-14, August 1965, pp 561-569. 
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Let us  now consider the sufficiency of the condition 

X" # U" => A (SO, X" vL) f A (SO, U" wL) 

for the existence of a delay L inverse with respect to SO. To prove suffi- 

ciency we assume that the condition holds and construct an inverse for M. 

Let M' =< S ' ,  XI,, Y', a', A' > be defined by 

X ' = Y  

Y ' = X  

L -  1 

i = O  
S '  = { u { [SO,, yi] : There exists xi such that 

h, (So, xi) = yi )  \u{ [Si, yL] : 

there exists xL such that 

For every [so, yi] E S'; 0 5 i <L-1; 

Si reachable from SO and 

(si, x ) - y 

if [so, yi z] E S, define 6' and A' by 

. 
L -  "1 

i ([so, Y'], z) = [so, yi z] 
1 h' ( [SO, yi), z) = an arbitrary letter from Y . 

For every [si,aB L-l] t S' and for  every z such that there exists a bL such 

that A(Si, a bL) = a b  L-l z define 6 '  and hl from 

Since si is reachable from SO by some input sequence cm for some m it is clear 

from our assumption 

A(s0, x" VL) = A(s0, u"&) => x"'= v" 

for all integers n, that A(so, cm a b L ) uniquely defines the input sequence cm a 

and hence, the input letter a. Therefore, the mappings 6' and A' are well de- 

fined in all cases considered. In all other cases let the next states and output 

letters be specified arbitrarily. 
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W e  claim that M' is a delay L inverse for M with respect to state so. To 

verify this assertion consider the result of application of any input sequence, 

say, x (0) x (1) x (2) * a * e *  e to M in state s (0) = so. Let h(so, x (0) x (1) x (2) 

a , . . . .  ) = y (0) y (1) y (2) 0 . ' 0  * be applied as an input sequence to M' in state 

S I  (0) = so1 = [so, yoI] , where yo = A is the empty tape. By the construction 

of MI we  have 

SI (L-1)= [ so ,  y(0) y(1) e * * * e *  Y (L-I)] * 

Moreover, by construction we have 

and y1 (L) = x (0) . 
Again by construction we may write 

and y1 (L+1) = x (1) . 
By induction, it follows that for all t 2 L  

SI (t) = [s (t-L + l), y (t-L + 1) y (t-L+ 2) e * * e  y (t,l 
and y' (t) = x (t-L) . 
Therefore, M1 i s  a delay L inverse for M with respect to state so and the con- 

dition of the theorem is sufficient for delay L inverse existence. 

The constructive proof of Theorem 1.2 provides a procedure for inverse 

construction. To illustrate the application of Theorem 1 . 2  in the construction 

of inverses, consider the FSM M defined in Figure 1.1. It can be shown (e. g . ,  

by Theorem 1.3, to follow) that the machine of Figure 1.1 has a delay two 

inverse with respect to state si. Following the steps of the constructive proof 

of Theorem 1.2 for L = 2 we define such an inverse as in Figure 1 .2 .  
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I 
The inverse machine M should be initialized to state 

properly recover the input letters of M when M is initialized to state SI. 

We note that an inverse constructed according to the procedure of Theorem 

1 . 2  will, in general, not be minimal. Based on the construction it is possible 

to state an upper bound on the number of states in  the minimal inverse. 

maximum number of states in such an inverse follows from the definition of M'  

The 

and is given by 

L-1 

j = O  
(#SI)MAX = MAX [# { [so, yj] : there exists xj such that 

h (so, xj) = Y j  }] 
+ MAX [# { [si, y"] : si reachable from so and 

such that there exists xL such that 

= 1 -I- (#Y) + (#Y)2 + e * * . *  + (#Y)L-l + (#S) e (#Y)L 
T 

+ (#S) 0 (#Y)L . - (#Y) L- 1 - 
(#Y)-1 

Where #S and #Y indicate the number of states in the state set and the number 

of letters in the output set respectively. 

1 

An interesting characteristic of the inverse machine M of Figure 1 .2  is 

that, if the "don't care" entries a re  removed and the next state and output 

mappings are completely specified, M' does not have an inverse with respect 

to any state. This may be verified by any of several methods to be presented 

in later sections and is concluded as a result of Theorem 1.5 to follow. It is 

noted, however, that with any assignment of "don't care" entries M' remains 
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a delay L inverse for M with respect to state sl. Therefore, it is not in 

general true that every inverse machine itself has an inverse. 

' Incompletely specified machines will not be considered further in this 

work. The introduction of "don't care" o r  unspecified conditions complicates 

the study of inverses and results in a situation in which inverses may exist for 

certain next state and/or output assignments, but not for others. Hence, only 

completely specified machines will be treated in what follows, 

I 
Of course M is not the only inverse which may be constructed for the 

machine M of Figure 1.1. To illustrate the existence of two non-equivalent, 

non-equal delay inverses for  the same sequential machine, considek. the 

machine M" of Figure 1.3. 

S 

[ s4, 

FIGURE I. 3 - FSM MI', A DELAY ONE INVERSE FOR M 
WITH RESPECT TO STATE 54 

9 1  

Now both M1 of Figure 1 . 2  and M of Figure I. 3 are inverses for M of 
I 

Figure 1.1. The machine M is a delay - two inverse for M with respect to state 

s1 while M" is a delay one inverse for M with respect to s4. We note that M" 
__3 

is a delay one inverse for  both s4 and s5 with initial state correspondence, 
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54 

since s5 is reachable from s4. However, M is not an inverse with respect 

[sq, fl] and 55 [s5, X] as we know from Theorem 1.1 
1 1  

to s1 for any delay. 

The machine of Figure 1.1 is  one of a class of sequential machines for 

which an inverse exists with respect to every state. This follows from 

Theorem 1.1 since an inverse exists with respect to state s1 and every state 

is reachable from state sl. It is noted that the condition of Theorem 1 .2  does 

not provide a convenient test for the existence of an inverse with given delay 

L since input sequences of every length n 2 1 would have to be considered in 

order to verify that output sequences of length n + L are distinct for each 

length n input prefix. The following result, however, provides a test of finite 

length for existence of an inverse of given delay, and shows that the case n = 1 

is the only one which must be considered if  one examines all states reachable 

from so. 

Theorem 1.3: 

and only if 

An FSM M has a delay L inverse with respect to state so if 

x + u  => h(si, x aL) z h(si,u bL) 

L for every si reachable from so and for every a and bL E XL. 

Proof: (Necessity) Suppose M'  is a delay L inverse for M with respect to so. 

Suppose further that for some x # u CE X and for some si reachable from so we 

have h(si, x a ) = A(si, u b ) for some aL and b 6 XL. From Theorem 1.1 L L L 

it follows that M has a delay L inverse with respect to Si. But as a consequence 
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of Theorem 1.2 it is required that 

a contradiction results and the stated condition is necessary for the 

of a delay L inverse with respect to so. 

(si, u bL) for x # 

- 

(Sufficiency) Suppose that the FSM M satisfies h(Si, x aL) # A(si, u bL) for 

every si reachable from so and for every x # u and aL and bL E XLe Suppose 

further that no delay L inverse exists for M with respect to state SO. In this 

n case, it follows from Theorem 1.2 that input sequences xn = x1 x2 e * e  e e x 

and un = u1u2 e .  e un can be found for some n 2 1 such that xn # un and such 

that )\(so, xn cL) = A(s0, un dL) for some cL and dL E XL. Let i be the index 

of the first letter in which xn and un differ. Let sj = 8 (so, x1 x2 * 

d(S0, u1 Ua e 0 0 0 ui-1). But sj is reachable from SO and Msj, xi xi+l. e 0 x n cL) 

= W j ,  U i  %+I e e 0 I+, dL). Since Xi  # U i  we have a contradiction of the initial 

hypothesis. Consequently the assumption that no delay L inverse exists with 

respect to state so is not compatible with the initial hypothesis and the 

0 xi-l) = 

theorem is proved. 

Since the number of states on the sequential machines under study is 

finite, Theorem 1.3 defines a test of finite length for the existence of an 

inverse with a specified delay with respect to a particular state. The m 

mum length of the experiment necessary to show that an inverse does not 

exist is the subject of Chapter 

Other systematic tests for invertibility will be considere 

which considers bounds on inverse delay. 

We now turn to the definition of certain output sequence, i 

and state sets, These definitions will be useful in the discussion of v ~ ~ o u s  
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structural properties of machines with inverses and will serve to make the 

proofs more concise. To this end we define the following. 

Definition 1.3: The length n output sequence set for state siis given by 

Yn (si) = yn: There exists xn such that h(si, xn) = yn 

Definition 1.4: The initial state set for output sequence 

Definition 1.5: The length n input sequence set for initial state s; and output 

sequence cyn is given by 

x" (Si, a") = (x"  : A(Si, x") = a n /  . 

Definition 1.6: The final state set for initial state si and output sequence an 
~ ~~~- ~~ 

is given by 

Sf (Si, cy n, = { s : There exists xn E Xn (si, 

6 (si, x") = S} e 

Definition 1.7: The length n output sequence-final state pair set for state si 

is given by 

Fn (si) = f p, s) : yn Yn (si) and s 

The sets given in Definitions 1.3 through 1.7 will be employed many times in 

the work which follows. 

The sets defined by 1.5 and I. 6 imply a measure of uncertainty eoncerni 

possible input sequences and final states. Given 

n, the order of 
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measure of the uncertainty concerning the input sequence which could have 

produced the output 61". The order of the final state set for so andan  is a 

similar measure of uncertainty concerning the final state. 

We shall be greatly concerned with the cardinalities and relations between 

the cardinalities of the various sets defined by 1.3 through 1.7. In particular, 

the implications of inverse existence on these set orders will be of interest. 

One such, rather obvious, relation between set orders is given as 

Theorem 1.4? If an FSM, M, has a delay L inverse with respect to state so 

for some L, then #Xn (si, an) = #Sf (si, an) for every Si reachable from SO 

and for every an C Yn (si), n -0. > 

Proof: 

#xn (si, an) > #Sf (si, an) for some si reachable from SO and an Yn (si). 

It follows that there exist an # bn € Xn and sn E Sf (si, 

h(si, an) = h(si, b") = an and b(Si, an)=  si, bn) = sn. But then A(si, a n k  x 

(si, bn xk) for every x e Xk; k 20. Since an # bn it follows that there 

Clearly #x" (si, a n )  2 #s, (si, a n )  for any machine. suppose 

n, such that both 

k 

exists some state s. reachable from si (and thus from so) such that J 
h(sj, xc L ) = h(sj, ud L ) for x # u. By Theorem 1.3 M does not have a 

delay L inverse with respect to so for any L and the theorem follows. 

21t can be shown that the assertion of this theorem holda for a somewhat 
weaker condition, i. e., the information lossless condition to 
in Chapter III. 



15 

Another result which can be proved quite easily as a consequence of 

requirements on the order of the length n output sequence set for any state 

si is the following. 

Theorem 1.5: An FSM has no inverse with respect to any state if #X >#Ye 

Proof: Suppose for some FSM M we have #X = q and #Y = p. Suppose fur- 

ther that q >p. If a delay L inverse for M exists with respect to state Si we 

have as a direct consequence of Theorem 1 .2  that #Yn+L (Si) >q for every 

n 2 1. But there can exist at most pn+L output sequences of length n + L. 

Hence, #Yn+L (Si)( pn+L. It follows that p n+L /q n > l  e . However, consider 

the behavior of pn'L/qn as n increases without limit. We have 

n 

since q > p. Therefore, the existence of an inverse for M requires that 

A s  a consequence of the previous result we may state an additional neces- 

sary condition on the union of the length n output sequence sets. It is possible 

to show that if a sequential machine has an inverse, then a certain number of 

distinct output sequences of every length must exist. The necessary condition 

is given as 

Theorem 1.6: 

some L and if #X = q, then for any j 2 0 

If an FSM M has a delay L inverse with respect to state SQ fo r  

from so 
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Proof: Consider the FSM Mj (so) =<S*, X*, Y*, *, A*> which is the j-th 

extension of M with respect to state SO and is defined by 

S* = f si : there exists xnj such that d(so, xnj) = si; n 

x* = xj 

a *  (si, xj) = a(si, xj) 

Y* = { yj : there exists si Q S* and xj such that A(si, xj) = } 

A* (si, xj) = A@, xj) 

Suppose # { U yj (si)} <d * 
Si reachable 

from so 

This implies that #Y* < qj = #Xj = #X*. By Theorem 1.5 no inverse with any 

delay exists for Mj  (so) with respect to any state. However, if M has a delay 

L inverse with respect to state SO for  some L, then it follows that the j-th 

extension of M with respect to so , M (so), is also an inverse for MJ (so). 

Hence, if M has an inverse with respect to SO, the assertion of the theorem 

follows. 

I 1 f j  

In the special case for which #X = #Y, the result of Theorem 1.6 may be 

extended by the following two corollaries. 

Corollary 1.6.1: If an FSM M has a delay L inverse with respect to 

state so for some L and if #X = #Y = q, then for every j 2 0  

from so 

Proof: If #Y = q it follows that 

from SO 
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Since M has an inverse with respect to state so, Theorem 1.6 requires that 

- 

from so 

Hence, it must be that 

from so 

Corollary 1.6.2: If an FSM M has a delay L inverse with respect to state SO 

for some L and if #X = #Y = q, then for every j 2 0 and for every yj, there 

exists some state, say si, reachable from so such that yj 6 Yj (si). 

Proof: 

output sequence yj for  some j such that yj # Yj (si) for any si reachable from 

The proof follows trivially from Corollary 1 since if there exists some 

so, then 

# (  u Yj 
si reachable 

from so 

and the condition of Corollary 1 

(Si) } 5 qj-1 

is not satisfied. 

This concludes the preliminary results of Chapter I. In  this chapter we 

have presented a very general inverse definition pertaining to the general class 

of finite state machines. Some implications of inverse existence were investi- 

gated, necessary and sufficient conditions for inverse existence were obtained, 

and some requirements on certain input, output and state set orders were de- 

rived. In the next chapter we will modify our inverse definition to some extent 

and show some interesting properties of a more restricted class of FSM's for 

which an inverse exists according to this modified definition. 



CHAPTER II 

GENERAL DELAY L INVERSES 

In this and in succeeding chapters we will make use of a modification of the 

inverse definition given in Chapter I. An FSM M' will be considered a general 

delay L inverse for an FSM M if M' is a delay L inverse with respect to all 

states. Formally we will consider the following. 

Definition 2.1: An FSM M' is a general delay L inverse for an FSM M if M' 

is a delay L inverse for M with respect to s for every s e S. 

Furthermore, it will often be necessary to consider the least integer L for 

which an FSM has a general delay L inverse. For convenience we shall say 

that M is INV #L if L is the least integer for which M has a general delay L 

inverse. Moreover, we shall say that M is invertible if M is INV#L for some 

integer L. Invertibility will be considered in this sense in all that follows. 

In this chapter some structural properties of a certain class of invertible 

finite state machines will be investigated. A necessary and sufficient condition 

for machines of this class to possess the INV #L property will also be pre- 

sented. The class of FSM's to be considered is defined by two constraints; 

strong connectedness and equal order input and output alphabets. 

Definition 2.2: An FSM is strongly connected if, for all possible pairs of 

states Si and Sj,  there exists some input sequence xn for some n such that 

(Si9 x") = ~ j .  

18 



It is clear, in the case of strongly connected machines, that an inverse with 

delay L with respect to any state implies the existence of a general delay L 

inverse. This follows immediately from Theorem 1.1 since every state it3 

reachable from every other state if strong connectedness holds. 

The two characteristics of strong connectedness and #X = #Y together with 

the invertible condition yield some interesting results concerning the structural 

properties of FSM's of this class. One of these results is given as  

Theorem 2.1:  If M is a strongly connected, INV #L FSM with #X = #Y = q, 

then #Sf (s, yn) = J for some J, for every s € S, for every yn e Yn (8) and for 

every n >L. 

Proof: Let Si and aL satisfy 

#Sf (Si, UL) = MAX #S, (8, YL) 
s € s, yL E YL (5) 

and in addition, define J = #Sf (si, UL), Suppose there exist S j  andfl" with 

n 2 L such that #Sf (sj, f l  ") # J. 

exists Y k  for some k such that S j  E Sf (si, a 

follows that the sequence 61 

sk. Let PL be the last L letters of Bn. 

sf (si, a Y B 

# ~ f  (sk, pL) < J since J is maximum over all such state sets and 

But Theorem 1.4 implies that 

From the strongly connected property there 

Yk). But if M is INV #L it 

kfl implies the (k + n)-th successor of Si, say 

Consequently, we may write 

L k n  L = sf (sjp B n, = S, (sk, P ), which in turn implies that 

") # J. 
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Hence, since #X = #Y = q and since #Sf (si, OIL y ") < J, there must exist 

some Bk+n such that #Sf (Si, Cy 

requires that UL 0 k+n implies the (k+n)-th successor state of Si, say Bn. Let 

qL be the sequence containing the last L letters of ~ 7 ~ ' ~ .  

L Sf (Si, dL Qk+n) = Sf (Sn, qL) and hence that #Sf (Sn, 

J is not maximum as was assumed and by contradiction the theorem follows. 

0 k+n) > J. But the INV #L property again 

It follows that 

)> J. Therefore, 

The result of Theorem 2.1 requires that, for the class of FSM's consid- 

ered, the observation of any output sequence of length L or  longer from any 

known initial state yields the same uncertainty regarding the final state. The 

order of the final state set is the same for any choices of initial state Si and 

output sequence of length L or  longer allowed by Si. By Theorem 1.4, it 

i s  clear that this result may also be extended to show that the length n input 

sequence sets all have common order. 

Another quite similar result concerning the order of the length n output 

sequence sets for n 2 L can be shown. In this case we may state 

Theorem 2.2: 

then #Yn (s) = qn/J for every s e S and n>  L. 

If M is a strongly connected, INV #L FSM with #X = #Y = q, 

Proof: A s  a result of Theorem 2.1 we have #Sf (s, yn) = J for n 2 L and 

yn e Yn (s). 

always true that 

By Theorem .l. 4 we have #Sf (5, yn) = #Xn (s, y"). But it is 

#X" (6, y") = qn . 
y" €Yn (5) 

Hence, #Yn (s) * #Xn (s, yn) = #Yn (8) 0 J = qn. Consequently, #Yn (s) = qn/J. 

'We say that a state si allows- the output sequence yn if there exists xn such 
that A(si, x") = yn. 
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Since the number of distinct output sequences of any length must be an 

integer, it follows that J divides qn. 

we have the following corollary. 

In the special case in which q is prime 

Corollary 2.2.1: 

if, in  addition, q is prime, then for every n 2 L, for every s f S and 

yn f Yn (s) there exists some integer j such that #Sf (s, yn) = #X" (8, yn) = q j  

and #Yn (s) = qn-j. 

If an FSM M satisfies the hypothesis of Theorem 2.2 and 

Proof: 

implies that J = qj for some j .  The corollary follows. 

When q is prime the requirement that J divide qn for every n 2 L 

The preceding two results of Theorems 2.1 and 2.2 illustrate important 

structural properties of strongly connected, invertible machines with the 

same input and output set orders. For example, if M is a binary input, 

binary output, INV #4 FSM, then the number of output sequences of length 

four allowed by any state must be the same power of two, say 2k, for some 

k < 4. If, for instance, any state allows precisely three sequences of length 

four, then no delay four inverse exists. Furthermore, we have that #sf (s, y") 

is the same power of two o r  24-k for every s f S and yn E: Yn (s) if n 2 4. 

Hence, uncertainty is preserved and output sequences of length four or  longer 

do not yield differing uncertainties regarding the applied input sequences. 

These highly restrictive structural properties tend to limit the number of 

invertible, strongly connected FSM's with #X = #Y. Although no enumeration 

of such machines will be attempted for specified input, output and state set 
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orders it is apparent that these machines form a small part of the set of all 

such FSM ' 8 .  

Our final result of this chapter will be a necessary and sufficient condition 

for a strongly connected FSM with #X = #Y to be INV #L. The proof of this 

result will incorporate the following lemma. 

Lemma 2.1:  If M is an INV #L FSM, then {Yn ( s i ) n Y n  (s$ 1 = cb (the 

L empty set) for every n>  L and for every si, S j  f Sf (8, y ) for any s E S and 

yL€ YL (5 ) .  

Proof: The proof follows directly from the definition of an INV #L machine. 

Lemma 2 . 1  states that no two states in any final state set for any initial state 

and length L output sequence can allow a common output sequence of length L 

or  longer. Making use of the lemma and of Theorems 2 . 1  and 2 . 2  it is possible 

to show 

Theorem 2.3:  If an FSM M is strongly connected and #X = #Y, then M is 

INV #L if and only if for every Si e S and 01 e YL (si) 

U Y" (8 )  = Y" 
8 f Sf (st, orL) 

for every n 2 0. 

Proof: We first consider necessity. By Lemma 2.1 it follows that 

for n-L. > This follows since no o etates in % ( s t  L, can allow the same 
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length n output sequence. The results of Theorems 2 . 1  and 2.2 further imply 

that 

#Y” (s) = qn = # { y n } .  

Hence, it must he that 

U T  Y” (s) = Y”. 
s € Sf (Si, aL) 

Clearly the necessity of the above result for n 2  L implies the result must 

also hold for n 2 0. Consequently, necessity is shown for all n - > 0. 

W e  next prove sufficiency. To do this we assume that 

U Y” (s) = Y” 
s € Sf (Si, UL) 

for every n-> 0, for  every si and ctL YL (si) and show that M is INV #L. Let 

J =  MIN #Sf ( s 9  YL) 
s € s, yL € YL (s) 

and let s .  and B L  satisfy #Sf (Sj, BL) = J. It follows from our initial assump- 

tion and from the fact that #X = #Y that #Sf (sj, B y ) = J for every n and for 

J 
L n  

every yn. If this property does not hold, then there must exist some successor 

of Sj and some length L output sequence such that the corresponding final state 

set has order less than J;  a result which contradicts our hypothesis that J is 

minimum over all such state sets. Suppose M is not INV #L. This implies 

that there exists so 6 S and .aL+l = al a2 0 0 .  0 aL+l and bL+l = bl b2 e 0 o bL+l 

such that al # bl and such that h(so, aLfl) = h(so, bL+1) = Y 1 Y 2 O O e m  %+I’ 

Since M is strongly connected, there exists some output sequence, P k ,  for 

some k -0 > such that so Sf (sj, Pk). However, #S, (so, Y1 Y2 4 4 0 0  
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and #Sf (SO, y 1  y2 e 0 * *  

But this is a contradiction of our earlier conclusion th 

every yn and every n. Hence, we conclude that #Sf (so, Y1 Y, 9 

Since 

L)> J implies that #Sf (Sj, 

e YE) = J. 

Y L + ~ )  < J .  Consequently, J is not the minimum order of such a final state 

set and we conclude from the contradiction that if M is not INV #L, then 

u -  Y” (s) # Y” 

and the theorem is proved. 

The result of Theorem 2 . 3  means that, for the class of FSM’s considered, 

it is possible to choose arbitrarily’ an output sequence of any length and find a 

state that allows the chosen output sequence in any final state set of the form, 

Sf (s, yL). Stated another way, it is possible to generate from any initial state 

an arbitrarily selected output sequence of any length after a transient period of 

at most L time units, 

In this chapter we have defined notions of invertibility, of general delay L 

inverses and of INV #E machines. 

applied to the class of strongly connected FSM’s with the same input and output 

set orders. 

were obtained and a necessary and sufficient condition for INV #L behavior was 

proved. 

and some tests for inverse existence defined by previous investigators and 

relate these to our work. 

We have considered these definitions as 

Several structural properties of INV #E machines of this clam 

In the next chapter we will consider some concepts of invertibility 



CHAPTER III 

INFORMATION LOSS LE SSNESS 

Information losslessness and information losslessness of finite order 

were  first defined and studied by Huffman', '. The latter property, as will be 

shown, is quite similar to our INV #L condition as  given in Chapter 11. Fol- 

lowing Huffman we may state 

Definition 3.1: An FSM is information lossless (IL) if there exists no state si 

and no two distinct input sequences xn and un; n 21; such that both h(si, xn) = 

Definition 3.2: An FSM is information lossless of finite order N (ILF of order 

N if for every pair of length N + l  input sequences with different first letters 

xN+l and uN+l, there exists no state si such that A(s i ,  xN+l) = A(si, uN'1). 

Machines which are ILF of order N satisfy the property that knowledge of 

the initial state and first N+l  output letters guarantees the decipherment of the 

first input letter. Machines which are INV #L according to our definition also 

require L+l output letters in order to guarantee this result. However, the 

class of ILF of order N machines includes the N-1, N-2, * 0 * e and zeroeth 

order classes whereas an INV#L machine is not INV#(L-k)for any k 21. The 

'D. A. Huffman, "Information Conservation and Sequence Transducers, 
Proceedings Symposium on Information Networks, Polytechnic Institute of 
Brooklyn, April 1954, pp. 291-307. 

2D. A.  Huffman, "Canonical Forms for Information Lossless Finite State 
Logical Machines, 'I Transactions of the IRE Professional Group on Circuit 
Theory, Vol. CT-6 Special Supplement, May 1959, pp. 41-59. 

25 
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relationship between the INV #L property of Chapter II and that of information 

losslessness of finite order as in Definition 3.2 is thus that 

Theorem 3.1: An FSM M is INV #L if and only if L is the least integer such 

that M is ILF of order L. 

Proof: If M is INV #L, then by Theorem 1.3 and Definition 2 . 1  there can 

exist no two input sequences of length L+l which differ in the first letter and 

which yield the same output sequence from any initial state. Hence M satis- 

fies Definition 3 . 2  and is therefore ILF of order L. Conversely, if M is ILF 

of order L, Theorem 1 . 3  is satisfied for  every initial state and M has a 

general delay L inverse. Since L is the least integer such that M has a gen- 

eral  delay L inverse, it follows that M is INV #L. 

A s  indicated by Huffman the more general class of IL machines are not 

invertible. It is interesting to note, however, that in the case of minimal, IL 

FSM's, it is possible to determine for any n, the applied input sequence of 

length n from knowledge of the initial state and length n output sequence by a 

suitable terminal state identification experiment. A s  shown by Gill3 such 

identification experiments always exist in the case of minimal machines. 

Terminal state identification experiments consist of the application of an input 

sequence which yields a known terminal state no matter which of the states of 

Sf (si, an) that the FSM occupies after observation of the output sequence# 

from initial state si. The relevance of the term, "information losslessness", 

3A. Gill, Introduction to the Theory of Finite State Machines. McGraw- 
Hill,  1962, pp. 123-125, 149-153. 
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is apparent. Input information can always be recovered in some sense. In 

certain cases another interesting characterization of IL machines is possible 

as we will see shortly (Theorem 3.3). 

First  let us consider the inclusion properties of IL and ILF machines. . 
The following, rather obvious, theorem is due to Even4. 

Theorem 3.2: If an FSM is ILF (and hence invertible), then it is also IL. 

The converse of Theorem 3.2 is not true however, as is well known. This can 

be shown by counter example. 

example. 

The machine of Figure 3.1 is such a counter 

xo 1 

FIGURE 3.1 - A BINARY, IL, BUT NOT ILF FSM 

The fact that the machine of Figure 3.1 is IL but is not ILF is most easily 

determined by a testing procedure which we shall now describe. 

Several testing procedures for the determination of IL and ILF properties 
4 5 are available in the literature, e.g., Huffman2, Even o r  Hennie e A most 

4S. Even, "On Information Lossless Automata of Finite Order", IEEE 

5F. Hennie, Finite State Models for Logical Machines, John Wiley & Sons, 

Transactions on Electronic Computers, EC 14, August 1965, pp. 561-569, 

1968. 
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efficient test is due to Even and incorporates in one simple procedure a test 

for both IL and ILF conditions. Even's procedure can be summarized as 

follow s : 

(1) Consider the possible paths on the state transition diagram which leave a 

given state with common output labels. Construct an "invertibility test 

graph" (TTG) by taking all such paths two at a time labelling successive 

nodes on the ITG with the pairs of states at the same depth from the given 

state. The state pairs labelling each node on the graph are called com- 

patible pairs. More precisely, 

Definition 3.3: Two states Si and sj  are a compatible pair (Si, Sj) if either: 

(i) there exists a state sk and input letters x and u such that 

b@k, X) = Si, b (Sk, U) = 6 j 

and 

or  (ii) there exists a compatible pair (sa, sm) and input symbols x and u such 

h@k, X) = )r(Sk, U) 

(2) M is IL if and only if the ITG for M contains no compatible pairs of the 

form (si, si) for any si 6 S. 

(3) M is ILF of order N if and only if the ITG for M is loop free and the long- 

est chain of compatible pairs (nodes) on the ITG has not more than N nodes. 

To illustrate the application of this test, consider the machine of Figure 3.1 

and corresponding ITG of Figure 3.2. 
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FIGURE 3.2 - THE INVERTIBILITY TEST GRAPH FOR THE FSM 
OF FIGURE 3.1 

The complete ITG shown in Figure 3.2 has no pairs for the form (Si, Si). 

Hence, the FSM of Figure 3.1 is IL. However, the ITG is not loop free since 

both nodes (s2, s3)  and (SI, 52) close on themselves. Therefore, the FSM is 

not ILF and hence is not invertible. 

The number of compatible.pairs of states which appear on the ITG for any 

FSM M may be found by consideration of all distinct pairs of states in the 

final state sets for M.  This conclusion results from the following lemma. 

n Lemma 3.1: For any FSM M, if Si and Sj € Sf (Sk, an) for some Sk anda  , 

then (si, sj) is a compatible pair on the ITG for M. Conversely if (Si, Sj) is 

a compatible pair on the ITG for M, then there exist sk and Qln for some n 

such that both si and Sj f Sf (sk an). 
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Proof: The proof follows directly from Definitions 1-6 and 3.3. 

W e  now turn to the additional characterization of a certain class of 

information lossless machines which was alluded to earlier. 

here will be to the same class of FSM's considered in Chapter II, viz, those 

Our restriction 

possessing strong connectedness and satisfying #X = #Y. 

Theorem 3.3:6 If 

IL if and only if 

U 
s € S  

M is a strongly connected FSM with #X = #Y, then M is 

Y" (s) = Y" 

for every n 2 0. 

Proof: 

if M is not IL, then there.exists some yn for some n 21 such that yn is not 

First we consider sufficiency. To prove sufficiency we will show that 

allowed by any state. To accomplish this we make use of 

Lemma 3.2: 

integer n 21 such that for every s € S and for every m > n  there exists 

xm # um such that &(s, xm) = &(s, um) and A(s, xm) = A(s, urn). 

If a strongly connected FSM is not IL, then there exists an 

Proof: The hypothesis that M is not IL  implies the existence of SO and sf Q S 

and ai # bi Q Xi for  some i such that &(SO, ai) = &(so, bi) = sf and A(s0, ai) = 

A(so, bi). By the strong connectedness property there exists vj for some 

6The result embodied in this theorem has been previously shown within the 
framework of Graph Theory. See: L. R Welch, "Labelled Oriented Graphs 
which are Onto", N. S.A. Technical Journal, October 1966, pp. 43-49. 
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j <N-1 (where N = #S) for every s € S such that &(s, vj) = so. Let xn = vj ai 

and let un = vj bi. Clearly n -. < N-1 + i and &(s, x") = &(s, u") and A(s, x") = 

A(s, u"). Since the final state is the same for both x" and un it follows that 

xm = xn wk and um = un wk, where wk is any input sequence whatever, satis- 

fies the assertion of the lemma. 

Consider the length k output sequence - final state pair for state s set, Fk (s), 

given as in Definition 1.7; 

Fk (s) = { (p, Sk): There exists x k such that &(s, x k ) = sk  

and A(s, xk) = yk 1 . 
By ,Lemma 3.2 it follows that for every s € S there exists some n such that 

for every m 2 n we have #Fm (s) -qm < - 1 (where q = #X = #Y). This follows 

since each pair (ym, Sm) in Fm (s) must result from a distinct input sequence 

of length m and at least two of the possible qm input sequences yield the same 

pair. 

It can be easily verified that for every k, j 2 1 and for every s € S 

~ k + j  (s )  = { (ykyj, sf): there exists Sk such that cyk, sk) tFk (s) and 

e', sf) eFj (sk) } * 

Making use of this representation for  Fk+j (6) it is possible to state 

Proof: The proof of the lemma follows from the fact that 

#Fk+J { [bk, sk), &J, .fd : <yk, sk) (8) 

and <yj, Sf) EFj  (Sk) } . 
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Inequalityis possible in the above expression since more than one state sk 

may be associated with a fixed choice of yk, and sf. Clearly if we choose 

Sk such that #Fj (sk) is maximum, then #Fk+j (S) -#F < k  (8 )  #d (sk) and the 

lemma is proved. 

Applying the result of Lemma 3.3 for j = m and recalling that #P (sk)(qm - 1 

we have for the machine M 

#Fk+m (s) s # F k  (6) (qm - 1) 

for every k and for every s 6 S. As a consequence it follows that for any t 21 
#Ftm ( 6 )  5 (qm - l)t 

which further implies that 

#Ftm (s) - < N (qm - 
s c s .  

Suppose, on the other hand, that for  any choice of 

some state in S which allows yn. This is equivalent to 

for any n there exists 

u yn (s) = Y" . 
S € S  

For n = tm we have that 

Hence, it must be that 

(s) 2 qtm . 
s € S  

But it is always true that 

#Yn (s)L#Fn (s) . 
Therefore, we have 

#Ftm ( 8 )  2 q t m  . 
s e s  
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By combination of the upper and lower bounds on the summation #Ftm (s), 
s L S  

it follows that 

qtm< N (qm - l)t 

and hence that 

N >(qm/(qm - 113 
for every t. The result is clearly not possible since the right hand side is 

unbounded as t increases without limit and N must be finite. Therefore, we 

conclude that if M is not IL, then there exists some n and some output sequence 

yn such that is not allowed by any state. Hence, sufficiency of the condition 

of the theorem for the IL property is shown. 

To show necessity we assume that there exists some n and some an € Yn 

such that an is not allowed by any state and show that M is not IL. 

M is IL. It follows from Definition 3.1 that (yh, sf) €@ (s) implies the 

applied input sequence xkn for every s € S. Hence, it must be that #Fkn (s) 

2 q h .  But if an is not allowed by any state it follows that #Yn (s) < qn - 1 

and further that #Yh (s) 5 (qn - I) k for every k 2 1. In addition, for N = #S 

we have that #Fb (s) 5 N 

and lower bounds on #Fkn (8 )  the result is 

Suppose 

#Ykn (s) 5 N 0 (4" - l)k. Combining the upper 

N * (9" - l ) k  qnk 

which yields 

N 2 (qn/(qn - 1) )k 

for eve r j  k, Since N must be finite this result is not possible as was con- 

cluded also in the proof of sufficiency. Hence, the assumption that an is not 

allowed by any state implies that M is not IL and necessity is shown. 
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The condition of Theorem 3.3 for the IL property may be compared with 

the similar result of Theorem 2.3 for invertibility or  the INV #L property. 

The same class of FSM's is considered in each case, viz, strongly connected 

machines with the same input and output set orders. 

information-losslessness imply that one can arbitrarily choose an output 

sequence of any length and find a state which allows that sequence. Inverti- 

bility, being a stronger property, however, requires that such a state be 

reachable in at most L time units where L is the inverse delay. 

INV #L machines, any desired response can be obtained after a transient 

period of length L. 

Both invertibility and 

Hence, for 

Consideration of the IL property for general FSM's leads naturally to 

questions concerning bounds. In particular, we may inquire as to the maxi- 

mum integer n such that there exists no state s or  input sequences xn # un 

satisfying &(s, 3) = &(s, un) and A(s, xn) = A(s, un) on a non-IL machine. 

We are able to derive an upper bound on this integer for the general class of 

FSM's. The bound is given by 

Theorem 3.4: 

Proof: Let M 

If an FSM M is not IL, then there exists so and an # bn such 

= A(s0, bn) and &(so, an) = &(so, b ) for some n, n 

be any non-IL FSM. Suppose the least integer n such that there 

exist so, an and bn satisfying the assertion of the theorem is greater than 

+ 1. Let an = al a2 e 0 .  an and bn = bl b2 e e e e bn. Since there are only (2") 
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i < j  

possible distinct pairs of distinct states it follows that for some i, j; 

5 (:) ; we have either 

(so, al a2 0 0 = &(SO, al 3 0 0 e aj) and 

6 (SO, b l  b2 0 * * *  bi) =  SO, bl  b2 * * * bj) 

or 

&(so, al a2 0 0 0 ai) = & (so, bl b2 - 0  bj) and 

& (SO, b l  b2 0 * 0 b.) 1 = &(SO, a1 a2 * * *  aj) * 

In either case it is clear, since &(so, an)= &(so, bn) and &, an) = A(so, bn), 

that there exist input sequences of length n-j, say cn-j and dn-j, such that 

0. a cn-j) = &(so, b l  b2 & ( S o ,  a1 a2 i bi d n-j ) 

and 

n-j )((so, al a2 * * e  ai cn-J) = )((SO, bl b2 * e *  bi d ) . 
But i < j .  Hence, i + n-j < n and n is not the least integer such that the asser- 

tion of the theorem is true. Consequently, it follows that the minimum such 

(r) + l *  integer is less than 

Theorem 3.3 implies that there exists some maximum integer n such that 

for every yn one can find s and xn satisfying h(s, 9) = 

strongly connected FSM with N states and #X = #Y = q. 

give a satisfactory bound on this integer ne 

which follows from Lem.ma 3.2 and Theorem 3.4 and which is given in terms 

of N and g has been obtained. The bound grows rapidly with N however, and 

is not considered of sufficient consequence to present here. 

in the case of binary machines, a tight bound on n appears to be given by 

on a non-IL, 

We are not able to 

A very loose upper bound on n 

We remark that, 

n -2 < (N-l)# We have not been able to prove this conjectured bound for the 

binary case, however. 
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W e  present in this Chapter one more result which is closely associated 

with the work of Hennie . Hennie defines a test for the ILF property which, 

in terms of our parameters, consists basically of a test on the order of the 

intersection of initial state sets and final state sets. A slight extension and 

simplification of Hennie's procedure is presented in the following result. 

5 

Theorem 2.6:  An IL finite state machine M is INV #L if and only if L is the 

least integer such that 

# sf (si, 01 1 n si ( bL) } < 2 

L for every Si S, CY € Y (Si) and BL E Y . 

Proof: First consider the sufficiency of the condition given in the theorem. 

Suppose that 

# { sf (si, a) n si ( B ~ )  1 < 2 

for every Si S, 61 Y (Si) and B L L  Y for some least integer L. Two pos- 

sibilities exist. Either 

o r  

Since M is IL, by Definition 3.1 there exist no two input letters, x # u for any 

Therefore, for  any si there exists at most one input letter, x, such that 
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By Definition 3.2 M is ILF of order L and by Theorem 3.1 M is INV #L. 

Consider the necessity of the condition given in the theorem. Suppose there 

exists no L such that 

# ( sf (si, a) n si ( B ~ )  1 < 2 
L for every si, dl and 8 . It follows that for every L there exists some si and 

two input letters x # u such that 

A(Si, x aL) = A(si, u b L ) =a8 L 

for some aL and bL € XL. By Definition 3.2 M is not ILF of order L and 

by Theorem 3.1 M is not INV #L. 

An application of the result of Theorem 3.5 to test for ILF properties and 

consequently for invertibility differs from the test of Hennie in that in our test 

it is necessary to consider final state sets, Sf (si, a ) for sequences, a , of 

length only one. The formulation of the forward test table of Hennie's work re- 

quires that the table be extended to include all possible distinct sets sf (si, 

for all si andan,  n = 1 2  3 It is noted, in conclusion, that before the 

result of Theorem 3.5 can be applied to investigate ILF properties it is neces- 

sary first to test for the IL condition. There exist machines for which 

# { sf (s, a) n si ( 
for every s e S, 01 € Y (6) and BL 6 YL but are not INV #L if the IL  condition is 

not satisfied. The machine of Figure 3 .3  is an example which illustrates such 

behavior for L = 1. 



38 

FIGURE 3.3 - A NON-IL FINITE STATE MACHINE 

In this Chapter we have considered the concepts of information losslessness 

and of information losslessness of finite order. These concepts were related to 

our definitions of invertibility. A necessary and sufficient condition for a cer- 

tain class of FSM's to be IL was presented and some bounds associated with the 

IL property were  considered. In the next Chapter we will investigate the appli- 

cation of a particular state reduction procedure and its implications on FSM 

invertibility . 



CHAPTER IV 

ON THE STATE REDUCTION OF INVERTIBLE MACHINES 

Two states, say si and s are said to be n - equivalent if and only if 
j, 

A(Si, xn) = A(sj, xn) for every xn. Two states are equivalent if and only if 

A finite state machine is said to be they are n - equivalent for every n>O. 

iiiinimal if and only if there exist no two equivalent states in the state set. 

These are the usual concepts of state equivalence and minimal machines which 

have been treated extensively in the literature. 

lossless and invertible machines some variations on these definitions of equiv- 

alence and minimality are possible and useful. These variations may permit 

state reduction of machines which are minimal in the usual sense at the outset. 

The resultant state reduced machine can be shown to be invertible if the orig- 

inal machine was invertible. 

In the study of information 

An extension of the state reduction procedure which preserves invertibility 

and in certain cases information losslessness is possible, in general, because 

of the independence between these characteristics and input sequences. In other 

words, the IL o r  INV #L characteristics of an FSM depend only on the output 

sequences which a re  possible from each state and not, in an essential way, on 

the input sequences which produce them. To formalize this assertion we state 

the following. 

Lemma 4.1: An FSM M remains IL (INV #L) or  remains not IL (INV #L) under 

any interchange of both next state and output entries between two designated 

columns in any row of the state transition table (see Figure 1.1 @) 1 for M. 

39 
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Proof: 

machine, M .  The chains of compatible state pairs on the ITG are determined 

entirely by the output labels and next state assignments contained in each row 

of the state transition table for M .  The ITG does not depend on the input 

symbol for which the output label and next state are defined. It follows that 

the ITG's for any two N-state machines which have the same possible next 

state and output label entries in each row of their state transition tables are 

identical under any ordering of these entries. Since the machines yield the 

same ITG they possess the same IL and INV #L properties. 

Consider the invertibility test graph or  ITG (see Figure 3.2) for any 

Because of this exclusive dependence on output labels it may be suspected that 

the usual definition of state equivalence is too restrictive if only inverse prop- 

erties are to be retained in the state reduction of machines. If the state be- 

havior and output response for particular input sequences are not of interest, 

then state ffequivalencef' may be based only on possible output sequences with- 

out regard for the input sequences which produced them. 

The definition of state equivalence which seems to be of greatest useful- 

ness in this respect is the following. 

Definition 4.1: Two states, si and sj, are  n - output equivalent, written 

si 0, sj, if Y" (si) = Y" (sj). 

Thus two states are n - output equivalent if they allow precisely the same set 

of output sequences of length n. 



Definition 4.2: Two states si and sj are output equivalent, written si 0, sj, 

if si on s j  for every integer n 2 0. 

For example, in the two state, binary machine given in Figure 4,1 states s1 

and s2 are output equivalent since Yn (sl) = Yn (sB) for every n. 

FIGURE 4.1 - A BINARY FSM WITH TWO OUTPUT EQUIVALENT STATES 

From the definition of output minimal states we may characterize the cor- 

responding minimal FSM by 

Definition 4.3: An FSM is said to be output minimal if there exist no si and 

s j  C S such that si 0, sj. 

Clearly every output minimal machine is also minimal in the usual sense. It 

is obvious that the relation On is an equivalence relation on the state set S 

for every n. Consequently, On induces a partition of S. Every si and sj 

satisfying si On sj a re  contained in the same equivalence class of nn, the 

partition induced by On. 

Many of the properties of state equivalence and partitions induced by the 

usual state equivalence relation carry over to the corresponding output equiv- 

alence and output equivalence induced partitions. For example, the uniqueness 
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of the partition nn may be shown as for the partition induced by normal state 

n - equivalence. 

It is not, in general, true that if nn = nn+l for  some n, then xn+l = nn+k for 

every k 2 1. 

However, one important property is lost in the extension. 

This property holds fcrr partitions induced by the usual state 

n - equivalence relation and is a key element in the proof that two states which 

a re  (N-1) - equivalent, where N = #S are n - equivalent for every n or are 

simply equivalent. The example machine of Figure 4.2 shows a five state 

binary machine for which nl = nz but n2 # n3 # n4 = nm . 

State Transition Table 

FIGURE 4.2 - A BINARY FSM AND CORRESPONDING OUTPUT 
EQUIVALENCE PARTITIONS 

We note that 1.r4 = n ( ~ - ~ )  = l.rm for the machine of Figure 4.2 even though 

This (i. e., n ~ - l  = n,) appears to be a property of state = nz # n4. 

output equivalence partitions a s  in the case of partitions induced by normal 

state equivalence. The proof has eluded us thus far, however. Actually, we 

have not been able to show any bound on the length of the test for output equiv- 

alence for arbitrary finite state machines. 
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In the ,special case for which a machiqe is INV #L, is strongly connect 

and has #X = #Y it is possible to show that $he test for state output equiv 

has finite length. In this case a bound on the maximum index i such that 

ni # na> is a consequence of the following theorem. 

Theorem 4.1: If M is an INV #L, strongly connected FSM and #X = #Y, then 

nL=n, . 

L Proof: Suppose si OL sj. Let U be any length L output sequence in 

YL (si) = Y L (sj). By Theorem 2.3, given any yn e Yn for any n, it is pos- 

L L sible to find states in Sf (si, a ) and Sf (sj, u ) respectively which allow the 

sequence p. 
y n t y n }  - - yL+n (sj). By definition it follows that si O L + ~  sj. 

Hence, for any n 2 0, YL+n (si) = f UL y" : CYL € YL (si) and 

Since n is 

arbitrary we have Si 0, sj and consequently n~ = n, . 

It can be shown (see Chapter VIU) that, for any invertible FSM, the inverse delay 

L is at most N(N-1)/2. It follows immediately that, for the class of machines 

considered, 7rNw-1)/2 - - noo . 

It has been shown that nL is the final partition for an INV #L, strongly 

connected FSM for which #X = #Y. We note, however, that the minimum n for 

which 7rn = nm does not, in general, define the inverse delay of an invertible 

machine. The binary, strongly connected, INV #4 machine of Figure 4.3 

illustrates this point. 
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State Transition Table 

FIGURE 4.3 - AN INV ##4 FSM WITH n3 = Ta, 

By application of any of the tests for invertibility described in Chapter III 

it is possible to show that the machine of Figure 4.3 is INV #4. We observe, 

however that n3 = m4. 

and no further refinements are possible. It is seen that the final partition 

contains two output equivalent states, s1 and s3. 

alent in the usual sense, however. Cqnsequently, the machine of Figure 4.3 

is minimal in the usual sense and no state reduction by deletion of ‘equivalent 

states is possible. It is natural, nevertheless, to investigate the properties 

of machines which result from state reduction of output equivalent states. As 

will be shown these resultant state reduced o r  output minimal machines are of 

By Theorem 4.1 we know that n4 is the final partition 

These states are not equiv- 

particular interest when the original machine is invertible o r  information 

10s s le ss a 
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To begin our investigation of the correspondence between the invertibility 

of a machine M and of i ts  output minimal version(s) we first formally define 

an output minimal representation of M. To do this we make use of the follow- 

ing notation. Let s be the block of ra> containing s. In addition let 

{ sjl, sj2, 

distinct blocks of nm for a machine M =<S, X, Y, 8 , 

c1 
jm } s be any representative states, one from each of the m 

> . 
Definition 4.4: An output minimal representation (OMR) of an FSM M is given 

by Mo (sjl, sj2, e *  * s jm ) = <So,  X, Y, 8 O,  A’> 

where 

It is easily seen that an output minimal representation of a given machine need 

not be unique. In general, if #n, < N  there may be many non-isomorphic out- 

put minimal versions of the same machine. Every output minimal representa- 

tion of a given machine has the same number (i. e. #nm = m) of states, however. 

From the definition of an output minimal representation of a machine it is 

possible to show a somewhat evident but nonetheless important property of such 

state reduced machines. This property is given as 

0 Lemma4.2: If M (sjl, sj2, * * * *  s ) is an OMR of an FSM M and if jm 

Sk e pjJ for some index i, then Y” (sk) = Y” pjJ for every n. yX” 1 

is taken to mean the set of output sequences of length n allowed by state 
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Proof: From the definition of output equivalent states it follows that Yn (sk) = 

Yn (s..) for  s 6 sa. . Hence, it is only necessary to show that Yn (sji) = 
11 k [Jd 

Yn ( pjd ). Suppose that t is the least integer such that Yt (s..) # Yt ( 8. .  
11 CJiI 

for any pjd 6 So. Clearly t > 1 since by Definition 4.4, Ao ( pjd , x) = 

A(sji, x) for every x € X. In addition, by our assumption that n is minimum 

[&(sji, x,) . But this implies that Yt (sji) = Yt ( sji contrary to our c I)? 
and for every n we conclude that pjg assumption. Hence, for every Sk 6 

It is possible to show that many of the properties of finite state machines are 

preserved in their output minimal representations. In particular, in the case 

of invertible machines we can show the following relation, 

Theorem 4.2: Let M be any FSM and let Mo (sjl, sj2 * sjm ) be any OMR 

of M, then Mo (sjl, sj2, e *  s ) is INV #L for some L I S  L if M is INV #L. 

Further, if M is INV #L, then there exists at least one OMR of M such that 

M 0 (Sj1, sj2, * * *  sjm) is INV #L. 

1 

jm 

Proof: Let M be an INV #L machine and let Mo (sjl, sj2, * * * * a  s 

e * * .  s OMR of M. Suppose Mo (sjl, sj2, 

follows that there exists pji) € So and input sequences aL+l = al a2 * * * 0 

) be any jm 
t 

is not INV #L for any L'S L. It jm 

0 L+l aL+l and bL+l = bl b2 * * bL+l with al # bl such that A ( 
j d p  a ) =  

Ao ( pjd , bL+l). By Definition 4.4 A(sji9 al) = ~ ( s ~ ~ ,  bl) and also 
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Consequently, both b(s . .  al) and d(sji, bl) allow a common output sequence 

of length L. It follows that M is not INV #L, contrary to our hypothesis, 

Hence, if M is INV #L then any OMR of M is INV #L for some L L. 

J 1' 

1 1 

It remains to show that at least one OMR of M is INV #L. If M is 

INV #L there exists Sk 6 S and input sequences cL = c1 c2 * e * e cL and dL = 

dl d2 O * * * dL with c1 # dl such that A(sk, c ) = )I(Sk, d ). 

M (sjl, sj2, 

Define L L 

s ) such that 5.. = sk for some i. By definition 4.4 it 0 
jm 11 

[ JJ 
cl) = Ao ( pjd , dl) and in addition that 6' ( s , [ iJ follows that Ao ( s.. 

c l )  = [&(sk, cl)l and 6' ( Ejd , dl) = [,(sk, d l q  . Consequently, both 

bo  ( pji] , cl) and bo ( Ejd , dl) allow a common output sequence of length 

L-1. Hence, Mo (s.. s * s ) is not INV #L' for L' < L. Clearly, 

from the initial result of the theorem, M (sjl, sj2, * * sjm) is INV #L and the 

31' j2' jm 
0 

proof of the theorem is completed. 

To show the existence of an invertible machine which has more than one 

output minimal representation with dissimilar inverse delays, consider the 

machine of Figure 4.3. Two possible state reduced o r  output minimal ver- 

sions of this machine corresponding to the two choices of representatives si 

from the class (sl, s3) are possible. 

a re  shown in Figure 4.4. 

The two output minimal representations 

0 It may be shown that M (s3, s2, s4, s5, s6, s7, s8, sg) is INV #4 and hence 

retains the inverse delay of the original machine. Machine Mo. (sl, s2, s4, 

s5, s6, s7, s8, sg), on the other hand is INV #2 and, in addition, is not 
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0 1 

0 
('1, '2, '4, ' 5 ,  '6, 

FIGURE 4.4 - TWO 

0 1 

OUTPUT MINIMAL REPRESENTATIONS OF THE 
FSM OF FIGURE 4 .3  

strongly connected unlike the original 

representation. States p2] , p6], 

s9) 

machine and the alternate output minimal 

s6, 57, s8, sg) are transient states while the remaining states form a strongly 

connected INV #2 submachine. 

Although it is not possible to show that the IL property is preserved by 

state reduction of output equivalent states for the general class of finite state 

machines , it is possible to show that IL behavior is preserved for an impor- 

tant class of machines, i. e., strongly connected machines. To aid in the 

proof of this result we will use the following lemma. 

1 

'It should be noted also that, for general FSM's, IL behavior may be lost 
by state reduction of states which &re equivalent in the usual sense. 
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Lemma 4.3: 

tive integer. Then, for any si € S and an e: Yn (si), there can exist no two 

output equivalent states in sf (si, an)). 

Let M be an IL, strongly connected FSM and let n be any posi- 

Proof: Suppose for some FSM M there exists s. and Sk CE Sf (si, an) for some 

si and an€ Yn (si) such that sj 0, Sk. Suppose further that M is strongly 

t t connected. Let x be any input sequence such that &(sj, x ) = si and let 

t m  h(sj, 2) = bt. 

(Un B t)m) 5 #Sf (si, (Un B t)m-l) for  some m. This implies that (Bt is 

allowed by s. but not by Sk and cbnsequently that s. 4 kd which is a contra- 

diction. 

follows that for some rn', #Sf (si, ( a n  

have #X 

and the lemma follows. 

J 

Clearly si e: si ( ( a n  B ) ) for every m. suppose # ~ f  (si, 

J J 

Hence #Sf (si, ( a n  B t)m) > #Sf (si, ( a n  B ) 
t m-1 ) for every m. It 

) = N = #S and for m +1 we must 
t m' I 

) 

nt (ml+l) (si, (a n B t ) m'+l ) >#Sf (si (an 8t)m1+1). Hence, M is not IL 

With the aid of Lemma 4.3 we may state the following. 

Theorem 4.31 

M is also IL. 

If M is a strongly connected and IL FSM, then every OMR of 

Proof: Let Mo (sjl, sj2, s ) be an OMR of a strongly connected, IL 

sjm) is not IL. It follows that there machine M. Suppose M (sP, sjz, * * * @  

jm 
0 

0 n 
exist kjd 6 S and input sequences xn = x1 x2 * * xn and u = u1 u2 * * * *  Un 

0 n - - & ( pji] , u ? ~  But this implies that Sf (sji, a ) coptains two output equiv- 

alent states and by Lemma 4.3 M is not IL. 

OMR of M is also IL. 

Hence, if M is IL, then every 
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To show that the strongly connected restriction of Theorem 4.3 is necessary 

we give an example of an I L  machine which is not strongly connected and which 

has an output minimal representation that is not IL. The machine of Figure 

4.5 (a) is such an example. 

s 
sl 

. o  1 

s2 

s3 

(a) 
Machine M 

SO Y o  1 
\ 

3 
1 

(b) 
Machine Mo (q, s2) 

FIGURE 4.5 - AN IL, NON-STRONGLY CONNECTED FSM M AND A 
NON-IL OUTPUT MINIMAL REPRESENTATION OF M 

It is possible to show several other structure preserving properties of 

output minimal representations of certain classes of invertible machines. In 

the case of strongly connected machines whose input and output sets have the 

same order, it can be shown that the order of final state sets is preserved for 

output sequences of all lengths. To prove this assertion we make use of the 

following lemma. 

Lemma 4.4: If M is an INV #L, strongly connected FSM and #X = #Y = q, 

then for every si and sj €S such that si € kj] we have #S, (Si, an) = 

#Sf (sj, an) for every n and for every dln CE Yn. 

n Proof: For n >L we have #Sf (si, a ) = #Sf, (sj, en) by Theorem 2.1. Sup- 

pose n < L. Define the set of output sequences 
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If si (5 8 . .  , it follows from Lemma 4.2 that Ym (Sf (si, an) ) = Ym (Sf (sj, an) ) 

for every m. Let m = L-n. Since #Q (si, a Y 7 = #E+ ( s j a n  Y ~ - ~ )  for 

every output sequence Y L-n , it is clear that 

n L- 
[ JJ 

L-n #XL-n (sq, y L-n ) = c #XL-n (sp, Y ) . 
sp esf (sj? a7 c 

sq c sf (si, a") 

In addition, we may write 

and 

Hence, #Sf (si, a") = #Sf (sj, a7 for every n and the lemma is proved. 

With the aid of Lemma 4.4 it is possible to assert the following. 

Theorem 4.4: If M is a strongly connected, INV #L FSM with #X = #Y and 

Mo (sjl, sj2 s ) is an OMR of M, then for every n, for every sji and for jm 

Proof: As a result of Lemma 4.4 it is only necessary to show that #Sf(sji,an). 

= #Sf ( Ejd , a"). Since by Definition 4.4, A'( sji x) = A(sji, x) and since c1 
0 M (sjl, sj2, * * *  * s ) is invertible by Theorem 4.2, we have #X ( Ejd , a) = jm 

theorem holds for n = 1. Suppose t > 1 is the least integer such that for any 
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and 

where 8 = B, B2 * a  *. Bt. By our hypothesis that t is minimum we have 

X ( Fjg , 81) = X (sji, B1), it follows that #S, ( pjil , fit) = #Sf (Sji, fit); 

contrary to our assumption. Hence, by contradiction, the theorem is proved. 

From Theorem 4.4 it follows that the state reduced machine has the same 

maximum final state set order as the original machine if the original machine 

satisfies the condition of the theorem. Since a strongly connected, INV #L 

machine for which #X = #Y = q, for q a prime, satisfies L 2 j, where qj  is the 

maximum final state set order, it is clear in this case that L , the inverse 
1 

delay of the state reduced OMR, is bounded by 

~ I L ' S L .  

Another relation of some interest concerning the properties of certain 

invertible machines and their output minimal representations can be given as 

0 Theorem 4.5: Let M (ajl, sj2, * * sjm) be an output minimal representation 

of a strongly connected, INV #L FSM M with #X = #Ye If Mo (sjl, sj2, e * e sjm) 

is INV #L for L < L, then Mo (ajl, sj2, e 0 Sjm) is not strongly connected. 
I ? 

Proof: By Theorem 4.2 we know that every OMR of an INV #L machine M is 

INV #L' for some L'( L. Suppose M is strongly connected and #X = #Ye Let 
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Mo (sjl, sj2 * * * s ) be a strongly connected OMR of M with inverse delay 
jm 

L' < L. It follows that for every pjd and every (31" 6 Y n  ( Ejd ) where 

n ,>L1 that #Sf ( pjd , a n )  = J for some J as a result of Theorem 2.1. But 

c '1 n 
by Theorem 4.4 #sf (sk, an) = #Sf ( kji], a for every sk CF sji . Hence, 

n 1 #sf (sji, cy ) = J for every n 2 L  . However, since M is INV #L, there exist4 

some Sk € S and a = bl b2 * e *  bL with a1 # bl such 

that A(sk, a 

#sf (b(Sk) 

Since L-1 2 L  and since &@k, al) and &(sk, b l )  each belong to some equiv- 

alence class of nm, we have a contradiction of Theorem 4.4. Consequently, 

if L < L, then M (sjl, sj2, * * * *  s 

L L = al % * * * *  e aL and b 

= h(sk, bL) = 8 = 81 8 2  * * * * B,. L L But this implies that 

B2 B3 ' * * *  8 ~ ) <  J and #sf(b(Sk, bl), B2 8 3  ' * *  BL) < J. 
1 

t 0 ) is not strongly connected. jm 

In this chapter we have introduced a procedure for state reduction which is 

of particular interest when applied to invertible machines. It is seen that mt- 

put minimal representations preserve the invertibility and in certain cases the 

information losslessness of the original machine. Consequently, in some 

applications, as possibly in the design of encoders and decoders for discrete 

information channels (where it is not important which input sequence produces 

a particular output sequence), the described state reduction procedure may be 

usefully applied. The resultant machine o r  output minimal representation will 

yield the same possible output sequences as the original machine and will be 

invertible if the original machine is invertible. Furthermore, there exists a 

particular state correspondence such that the resultant reduced machine has 

the same inverse delay as the original machine. State reduction based on the 
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concept of output equivalence with the results described is possible because EL 

and INV #L properties of a finite state machine depend only on state and output 

sequences and not, in an essential way, on the input sequences which produced 

them. 



CHAPTER V 

FINITE INPUT MEMORY MACHINES 

In this chapter we will  consider the invertibility and information lossless- 

ness of finite input memory machines. 

Definition 5.1: An FSM M has finite input memory p(FIM ( p ) )  if ( p )  is the 

least integer such that the output at time t can be expressed in the form 

y (t) = f (x (t), x (t-1), . . x (t-P)) 

for t ,> M .  If no such p exists, M is said to have infinite input memory. 

The concept of memory can be generalized to both input/output memory as 

well as to output memory alone. The memory characteristics of finite state 

machines have been studied extensively by several investigators (see Vairavanl 

and the bibliography presented therein). 

For our purposes we will consider only non-degenerate, FIM ( p )  machines. 

The following definition is due to Vairavan. 

Definition 5.2: An FSM M = e, X, Y, d ,A> is non-degenerate if the mapping, 

6 :  S x X -+ S, is onto. 

In canonical realization form, non-degenerate FIM ( p )  machines are com- 

posed of a shift register and combinatorial logic as shown in Figure 5.1. 

'K. Vairavan, "On the Memory of Finite State Machines", Technical Re- 
port No. EE-683, University of Notre Dame, Department of Electrical Eng., 
April 7, 1968. 
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x (t-1) 

Y (t) 
11110 

f (x (t), x (t-l), x (t-2), * a e * IJ 

FIGURE 5 . 1  - CANONICAL REALIZATION OF A NON-DEGENERATE, 
FIM (p )  FINITE STATE MACHINE 

The realization of Figure 5 .1  is one in which any non-degenerate, FIM ( p )  

machine niay be synthesized. Vairavan has shown that all non-degenerate, 

FIM ( p )  machines have a unique output function f and that any two such 

machines which are non-degenerate and have the same output function are 

equivalent. 

those machines which have transient states we lose little generality in limiting 

our attention to FDM ( M )  machines which may be synthesized in the form of 

Figure 5.1 .  In the work which follows we will consider only FIM ( p )  machines 

which are in the canonical form of Figure 5.1 .  

Since our restriction to non-degenerate machines excludes only 

We observe that Xp, the set of all input sequences of length p , is an 
appropriate choice for the state set of machines in the canonical form of 

Figure 5 .1 .  Hence, if #X = q, every such machine has precisely q 

Further, it has been shown by Vairavan that qM is an upper bound on the order 

of the state set for non-degenerate, minimal, FIM ( p )  machines. 

clear that in canonical form, non-degenerate, FIM ( p )  machines are com- 

pletely defined by the function f which yields the present output. The next 

state is defined by the present input and the preceding f l  - 1 input letters. It 

follows that all such machines are strongly connected. 

It is also 
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We begin our investigation of the invertibility of non-degenerate, FIM ( f l )  

machines with the following result concerning the order of the initial state sets 

for output sequences of length L o r  longer. 

Theorem 5.1: If M is a non-degenerate, FIM ( p ) ,  INV #L FSM with #X = 

states, then there exists some K such that #Si (y") = K for every 

y" with n 2 L. 

Proof: Let m be the least integer such that m p  2 L. 

#Ynlp (si) = qmp/J for some J and for every Si € S. Moreover, since M is 

By Theorem 2.2 ,  

INV #L, it is clear that for every n - > L and for every yn t Yn, there exists 

one and only one state s j  Sf (si, amp) for every si t S a n d a  mfl € Y m p  (Si) 

such that sj t Si (y"). But from any initial state each of the qfl states in the 

state set s occurs precisely q(m-1)fl times as a final state for input sequences 

of length m p  . Hence, it follows that #Si <y") = #Ymg (si) / q (m-l)g = q fl/J. 

Consequently, i f  K = q fl/J, the assertion of the theorem is proved. 

W e  remark that the assertion of Theorem 5.1 is not true in general for 

invertible FSM's but results from the particular state transition structure of 

the class of machines considered as well as from the INV #L condition. 

consequence of Theorem 5.1 we may show an additional property of such 

A s  a 

machines. 

Theorem 5.2: 

#Y = q and qp states, then 

Lf M is a non-degenerate, FIM (p ) ,  INV #L FSM with #X = 

#X" (Si, y") = q Y 

for every n - > 1 and for every yn E Yn. 
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Proof: For n >L the assertion of the theorem follows immediately. In this 

n case we have #X" (si, a") = #X" (si, Bn) = J for every si and for every 

and 8" 4 Yn (si) by Theorem 2.1. In addition, by Theorem 5.1, we have 

n -  ) - #Si (8") = q P/J. Hence, for any y" e Y" with n 2 L it follows that 

#xn (Si, y") = q p  . 

Consider the case for which n < L. Suppose for some an with n < L we have 

Since #X = #Y = q, it follows that there exists 8" such that 

and consequently such that 

This means that over the state set S more length n input sequences are mapped 

into the output sequence 01" than into the sequence @". But, if we consider the 

pairs of distinct initial states and length mn input sequences (s., xmn) for  any 

m 2 1, we note that since M is a non-degenerate, FIM ( p )  FSM with q 

J 

states, each state in S satisfies 6(sj, xmn) precisely qmn times for distinct 

pairs (s 

be associated with each state in the state set. It follows that the number of 

xmn). Hence, there exist precisely qmn distinct pairs which may j' 

distinct pairs (sj, x ( ~ + ' ) ~ )  which correspond to length (m+l)n output sequences 

whose last n digits define the sequences an  and Bn are 
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respectively. But if 

#Xn (Si, a") > 
Si € S 

it is always possible to find some length mn output sequence, say ymn, with 

inn - > L such that 

Consequently, we have a contradiction of our initial result for n - > L and we 

conclude that the theorem holds for every n 2 1. 

Theorem 5.2 has an interesting corollary in the case of binary machines. 

In this case it follows that 

Corollary 5.2.1: If M is a binary, non-degenerate, FIM ( p ) ,  INV #L FSM 

with output function 

y (t) = f (x (t), x (t-1), * * * *  x (t-p)) , 

then there a re  precisely 2 p  terms in the canonical sum of products expansion 

of f .  

Proof: By Theorem 5.2'it follows that #X (si, 0) = 
si c s Si 4 S 

But this is entirely equivalent to the assertion of the corollary since each 

choice of x (t), x (t-1), 0 * * * x (t-p) such that y (t) = 1 corresponds to a dis- 

tinct term in the canonical sum of products expansion for f .  

It is not true, however, that every binary FLM machine with 2 

the canonical sum of products expansion for f is invertible o r  even information 
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lossless. The non-degenerate, binary, FIM (2) machine with output function2 

y (t) = x (t-1) 0 (x (t) e x (t-2)) 

is an example of such a machine which is not IL. 

It is natural at this point to investigate constraints imposed on the output 

function of an FIM ( p )  FSM in order to satisfy the invertibility condition. For 

small orders of L these constraints may be easily obtained. In the case of 

binary machines which a re  INV #O it is well known (see Preparata') that 

Theorem 5.3:  A binary, non-degenerate, FIM ( p ) ,  FSM is INV #O if and only 

if it has an output function of the form 

y (t) = x (t) @ g (x (t-1), x (t-2), e '  x (t-co) * 

A similar result can be obtained in the case of INV #1 machines. In this 

case we have 

Theorem 5.4: A binary, non-degenerate, FIM ( f l )  FSM M is INV #1 if and 

only if it has an output function of the form 

y (t) = x (t-1) @ g (x (t-2), x (t-3), * * * .  x (t-/A)) . 

Proof: The suffic'iency of the condition for the INV #1 property is evident by 

inspection. To prove necessity we first show that if M is INV #1, then y (t) does 

not depend on x (t) or that the output function for M can be written in the form 

y (t) = f (x (t-1), x (t-2), a e x (t-p) ) . 

21n this and succeeding chapters we will use the symbols 0, +? a ,  and - 
for the Boolean operations of exclusive or, inclusive or, logical product and 
complementation respectively. 

3F. Preparata, "Convolutional Transformations of Binary Sequences: 
Boolean Functions and Their Resynchronizing Properties", IEEE Transac- 
tions on Electronic Computers, Vol. EC-15, December 1966, pp. 898-908. 
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Suppose, to the contrary, that y (t) does depend on x (t). It follows that there 

esists a state, si, such that A(si, 0) # 

say sj, of si must also satisfy A(s 

chain of compatible pairs on the invertibility test graph for M of length at least 

t\vo and M is not INV #l. Since M is non-degenerate, a continuation of the 

above procedure for all possible predecessors of Si, of s. and of all predeces- 

sors of s 

reach the conclusion that every state s satisfies A(s, 0) # A(s, 1). But this 

requires that M is INV #0, contrary to our hypothesis. Hence, if M is INV 

#1, then y (t) does not depend on x (t). 

(si, 1). We note that any predecessor, 

0) # A(sj, 1). If not, then there exists a P 

J 

etc., will eventually exhaust the state set. At this point we will 1, 

We now must show that the output function f can be written in  the form 

y (t) = x (t-1) @ g (x (t-2), x (t-3), 0 * 4 * x (t- 1 )  

Suppose no such function g exists. It follows that there exists a sequence of 

input digits az a3 e 0 e * 0 0 0 a p  of length fl-1 such that if x (t-2) x (t-3) e e e 0 

x (t-p) = a2 a3 

f (x (t-1), x (t-Z), 

(1, az, as, 0 0 . .  aY)  form a compatible pair on the invertibility test graph for 

M. Consequently, there must exist a compatible pair chain of length at least 

two and M is not INV #1. Hence, if M is INV #1, then f can be written in the 

specified form. This completes the proof of Theorem 5.4. 

ap) = f (1, a2, a3, 0 . 0  0 a ) = Y aY, then f (0, a2, a3, 

x (t-p)) . But the states (0, a2, a3, e * * .  a 

The necessity that x (t-L) appear in a modulo-two sum with some function 

of past inputs for a non-degenerate FWI machine to be INV #L in the case of 

L = 0 and L = 1 might lead to the conclusion that this is a necessary condition 
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for L > 1 also. This, however, is not the case. The machine whose sequen- 

tial function is 

y (t) = x (t-1) @ (x (t) 0 x (t-2) * x (t-3)) 

is a counter-example to this conjecture. This counter-example is due to 

Prof. R. G.  Gallager4 of M.I.  T. To show that the machine with the above 

output function is INV #2 consider the equations 

y (t) = x (t-1) @ (x (t) * x (t-2) * x (t-3) ) 

y (t-1) = x (t-2) @ (x (t-1) x (t-3) * x (t-4) ) . 

Solve the first equation for x (t-1) and substitute for x (t-1) in the second to 

obtain 

y (t-1) = x (t-2) @ (y (t) x (t-3) x (t-4)) . 

Clearly we may express x (t-2) as a function of present and past output and 

past input digits. Therefore, a delay two inverse exists and the machine is 

I N V  #2. 

We wish to extend the results of Theorems 5 . 3  and 5.4 to derive require- 

ments on the form of the output function in order that a binary, non-degenerate, 

FIM ( p )  machine be invertible. Unfortunately, we are  not able to give both 

necessary and sufficient conditions for invertibility. However, we a re  able to  

define sufficient conditions; conditions which include a large class of invertible, 

FIM ( p )  machines. A generalization of the form of the output function for the 

INV #2 FSM just described leads to the following result. 

'Private Communication, Prof. R. G. Gallager to Prof. J. L. Massey, 
April 1967. 



Theorem 5.5:  A binary, non-degenerate, FIM ( ) FSM M is invertible if the 

following two conditions hold. (1) There exists an integer k such that the 

output function for M can be written y (t) = x (t-k) @ g (x (t), x (t-l)? e 

x (t-k+l), x (t-k-1), 0 9 .  x (t-y) ) for some function g of variables. (2) For 

each x (t-j); 0 -< j 5 k-1; that is non-idle in g there exists a distinct pair of 

unordered, non-idle variables x (t-pj) and x (t-qj) such that 2 pj 2 2k - j+l  

and q. = p - k+j and such that for each j every minterm in the canonical sum 

e 

~j 

of products expansion of g contains the product of literals, x (t-pj) 0 x (t-q.), J 

or  every minterm contains x (t-p.) e x (t-qj). J 

Proof: The arguments required to show the validity of the theorem are unre- 

wardingly tedious and hence, are omitted. 

Binary, non-degenerate, FIM ( f l )  FSM's with output functions satisfying 

the conditions of Theorem 5.5 are INV #L for L = 2k-n where n is the least 

integer j ;  0 5 j 5 k-1; such that x (t-j) is a non-idle variable in the output 

function. If all such x (t-j) are idle variables, then n = k and L = k. It is 

interesting to note that the formulation of Theorem 5.5 retains a character- 

istic noted for INV #1 machines. As a consequence of Theorem 5.4 it was 

observed that all binary, non-degenerate, FIM machines which are INV #I 

have an output function f such that x (t) is an idle variable in f. This same 

characteristic holds for the machines with inverse delay L < 2k defined in 

accordance with Theorem 5.5. If the inverse delay L is odd then x (t) must 

be an idle variable in f. 
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The formulation of Theorem 5.5 is not a canonical form for all binary, 

non-degenerate, invertible FIM machines. An output function which does not 

conform to the precise requirements of Theorem 5.5 but which may be taken 

to define an INV #2, non-degenerate, FIM (3) machine is given by 
- 

y (t) = x (t-1) @ (x (t) 0 x (t-2) 0 x (t-3) + x (t-3) ) . 

Necessary conditions on the output function f to insure invertibility of the 

corresponding FSM have not as yet been determined. 

Another. question of some interest concerns requirements on the output 

function of an FIM machine in order that the machine be information lossless. 

A s  in the case of conditions for invertibility we are unable to give both neces- 

sary  and sufficient conditions for the output function of a binary, non- 

degenerate, FIM ( p )  FSM to be representative of the information lossless 

property. We are, however, able to define some sufficient conditions for 

losslessness. First we observe that some of these conditions have already 

been given by Theorem 5.5 since every invertible machine is IL. Hence, we 

direct our attention in what follows to the class of information lossless but not 

invertible FIM machines. 

To indicate the nature of the conditions to be considered as sufficient for 

IL behavior we give several examples of output functions which may be taken 

to define FIM, IL  machines. First consider any non-degenerate, F 

FSM whose output function may be written in the form 

y (t) = x (t- f i )  @ g (x (t), x (t-1), e * 0 0 x (t- 

Clearly this machine is IL since we may solve for x (t- 
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of present output y (t) and the present and p-1 past input digits x (t), x (t-I), 

0 0 s .  x (t-p+l) which are known if -the final state is specified. With x (t-fl) so 

determined we may obtain x (t-p-1) from y (t-1) and x (t-1), x (t-2), * e 0 0  

). It i s  seen that all input digits x (t-p-i); i 2 0; may be recovered in 

this manner. 

Another more interesting example is the output function 
- 

y (t) = x (t-2) @ (x (t) * x (t-1) * x (t-3)) . 
To show that the non-degenerate, FIM (3) machine corresponding to this output 

function is IL we  wr i te  the expression for y (t-1) ; 

y (t-1) = x (t-3) @ (x (t-1) * x (t-2) (t-4)) . 
Solve for x (t-3) and substitute in the first equation to obtain 

- 
y (t) = x (t-2) @ (x (t) e x (t-1) * y (t-1)) 

which yields 

x (t-3) = y (t-1) @ (x (t-1) 0 x (t-2) 0 y (t-2)) * 

Since the final state is equivalent to (x (t), x (t-1), x (t-2)), knowledge of the 

final state allows the determination of x (t-3). A continuation of this procedure 

yields all prior input digits. It follows that the machine is IL. 

The form of this last example leads to the following generalization, 

Theorem 5 . 6 :  

invertible if the following two conditions hold. (1) There exists an integer 

A binary, non-degenerate, FINI ( ) FSM M is IL but is not 

such that the output function for M can be written y (t) = x (t-k) 8 
g (x (t), x (t-1), a x (t-k+l), x (t-k-l)> D D * O  x (t- ) )  for some function 
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variables. (2) For each x (t-j); k+l< j 5 ; that is non-idle in g 

there exists a distinct pair of unordered non-idle variables x (t-p.) and x (t-qj) 

such that 0 < p. 5 k-1 and 0 5 qj = pj + k-j and such that every minterm in the 

J 

J 

canonical sum of products expansion of g contains x (t-p.) 0 x (t-q.) o r  every J J 

minterrn contains x (t-p.) 0 x (t-qi) . J 

Proof: A s  in the case of Theorem 5.5  the proof, although straightforward, is 

quite tedious. Therefore, proof will be omitted. 

A s  in the case of the conditions sufficient for invertibility considered in 

Theorem 5.5 we cannot claim that Theorem 5.6 specifies output functions 

corresponding to all IL, binary, non-degenerate, FINI ( p )  machines. There 

are such IL machines whose output functions do not conform to the require- 

ments of Theorem 5.6. An example is the FSM whose output function is 
- 

y (t) = x (t-2) @ (x (t) * x (t-1) * x (t-3) + x (t)) . 

This function may be associated with an TL (but not invertible), FIM (3) finite 

state machine. 

W e  conclude this chapter by noting that, although Theorems 5.5 and 5.6 do 

not define output functions corresponding to all binary non-degenerate, FIM ( 

invertible and information lossless machines, these sufficient conditions do 

provide some indication as to the requisites of such output functions. 

remark that the requirement of both Theorems 5.5 and 5.6 that there exist 

some k such that the output function can be written 

We also 

y (t) = x (t-k) @ g (X (t), x (t-1), * e x (t-k+l), x (t-k-1), 0 0 * 0 x 

is believed to be a necessary condition for information losslessness. The 

proof for this conjecture has eluded us thus far, however, 



CHAPTER VI 

FINITE OUTPUT MEMORY MACHINES 

A class of finite state machines for which properties of invertibility and 

information losslessness may be completely specified is that of finite output 

111 cwiory machines. 

Definition 6.1: A finite state machine M has finite output memory /.f (FOM(p))  

if p is the least integer such that the output at time t can be expressed in the 

form 

.v (t) = f (x (t), Y PI) ,  Y (t-2), * * Y (t-ct) 1 

for  t 2 p .  If no such p exists, then M is said to have infinite output memory. 

'The output function f is considered as a mapping; 

N 

i = l  

where ;L' = #S. If an FSM has finite output memory /.f, then any output sequence 

of length p determines the final state up to equivalence. 

Vairavanl has shown a necessary condition for any non-degenerate finite 

state machine to have finite output memory. This condition is given as 

Lemma 6.1: 

si € S and for all x # u, if h(si, x) = A(si ,  u), then 

If a non-degenerate FSM has finite output memory, then for all 

'K. Vairavan, "On the Memory of Finite State Machines, '' Technical Re- 
port No. EE-683, University of Notre Dame, Dept. of Electrical Engineering, 
April 7, 1968, pp.43-44. 
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We note that the condition of Lemma 6.1 is necessary for finite output memory 

whether or  not the machine is minimal. 

A s  a consequence of Lcinma 6.1 we may state the following. 

Theorem 6.1: A non-degenerate FSM M with finite output memory is IL if and 

only if x # u implies that A(si, X) # A(Si, u) for every S i  € S. 

Proof: Sufficiency is obvious. Hence, we need only show necessity. Suppose 

M is IL but has a state si such that for x # u we have A(si, x) = A(si, u). If 

R.1 is  a non-degenerate FOM machine, it follows from Lemma 6 .1  that b(si, x) 

(si, u). But then M is not IL, contrary to our hypothesis and the theorem 

follows. 

Since every machine with A(si, x) # A(si, u) for every si is invertible with 

delay zero (INV #0) we may immediately state several corollaries. 

Corollary 6.1.1: Every non-degenerate, FOM FSM is INV #O and has an in- 

stantaneous inverse o r  is not invertible and has no inverse at all. 

Corollary 6.1.2: In the case of non-degenerate, FOM FSM's information 

losslessness implies invertibility . 

Furthermore, the result of Theorem 6.1 implies the following. 

Corollary 6.1.3: For every IL, non-degenerate, FOM FSM with #X = #U = q ,  

# Yn (Si) = q" 
Si E S 

for every n. 



69 

Hence, from Corollary 6.1.3 it follows that if #X = #Y, then for every output 

sequence there exists a state that allows that output sequence on an IL, non- 

degenerate FOM machine. 

A s  in the case of FIM ( p )  machines an appropriate choice for the state 

set S of non-degenerate, FOM ( p )  machines is the set of all possible output 

sequences of length p . It follows that for IL machines of this class, the 

order of the state set S is q p  if #X = #Y = q. Hence, for such machines, 

information losslessness implies strong connectedness. 

We present one more result in this brief chapter. This result concerns 

the form of the output function associated with IL, non-degenerate, binary, 

FOM (p )  machines. 

Theorem 6.2: A binary, non-degenerate, FOM ( p )  FSM M is IL if and only 

if the output function f for M may be written in  the form 

y (t) = x (t) @ g (y (t-l), y (t-2), Y (t-cc)). 

Proof: 

need only show necessity. Suppose that no such function g exists. 

Sufficiency of the stated condition is evident by inspection. Hence, we 

Then M 

must have a state, say si, such that A(si, 1) = A(Si, 0) = Let Si = 

past output digits. But the suc- 

cessor states of si satisfy b(si, 0) = (Si, 1) = (ao, -1). Since 

two distinct input digits yield the same output and the same final state it 

is clear that M is not IL. Hence the existence of g such that 

Y (t) = x (t) @ g ( Y  (t-l), Y (t-21, * e e o  * 

is a necessary condition for M to be IL and the theorem is proved. 



CHAPTER VII 

LINEAR MACHINES~ 

We consider in this chapter the most structured of all finite state machine 

classes, that of linear machines. In order to conform to somewhat more com- 

iiion usage we will refer to these devices as  linear sequential circuits rather 

than linear finite state machines. 

Definition 7.1: A finite state machine M = e, X, Y ,  6 ,  A> 

sequential circuit (LSC) if S, X and Y are  vector spaces over a finite field 

is a linear 

and A satisfy 

- s (t+l) = 6 @ (t), 5 (t) ) = A 2 (t) + B 2 (t) 

and x (t) = A (t), li (t) 1 = c 2 (t) + E x (t) 
where A, B, C, E are matrices over GF (9) and '+' is the additive operation 

in G F  (9). 

Since multiple input, multiple output LSC's will be considered we will let the 

input - x (t) be a K dimensional column vector and the output (t) be an Pa 

dimensional column vector; K = 1, 2, 3, e 0 0  0 .  ; N = 1, 2, 3, * * e a .  . 
addition, let the dimension of the state space be M; M = 1, 2, 3, a 0 0 0 0  . 

In 

Since linear devices are considered in this chapter, it is possible to  make 

use of transfer function matrices. It is well known that the transfer function 

'The results of this chapter were previously presented in University of 
Notre Dame, Department of Electrical Engineering, Report No. 684, entitled, 
"Note on Feedforward Inverses for Linear Sequential Circuits", April 1, 1968. 
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matrix H (D), where D i s  the unit delay operator, completely describes the 

zero state response of an LSC. The zero state response is  the only response 

l y e  will consider here. 

The matrix H (D) may be derived from the A, B, C and E structural 

iliatrices by a D-transformation of the equations given in Definition 7.1. The 

result of the derivation is 

H (D) = E - C (DA - I h ~ ) - l  DB (1) 

where IM is the M X M identity matrix. Clearly from Equation (1) the entries 

in H (D) are rational functions (ratios of polynomials in the delay operator D) 

with polynomial coefficients from G F  (q). In addition, it may be seen from (1) 

that H (D) for  an LSC with N outputs and K inputs is an N X K matrix. 

A s  is well known an LSC is strongly connected if and only if it is state 

controllable'. 

(0, is equivalent to invertibility with respect to all states for state controllable 

LSC's. Moreover, a minimal realization of H (D) always results in a state 

controllable LSC. Hence, we lose no essential generality by restriction to 

state controllable response and we will use invertibility synonomously with 

inverse with respect to state - 0 in the remainder of this chapter. 

Hence, the existence of an inverse with respect to state zero 

W e  will make use of the LSC transfer function matrix to derive the neces- 

sary and sufficient conditions for the existence of a special kind of inverse, 

2Martin Cohn, "Controllability in Linear Sequential Networks", IRE Trans- 
actions on Circuit Theory, Vol. CT-9, No.1, March 1962, pp. 74-78. 
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i. e. , a feedforward inverse LSC. Feedforward LSC's have transfer function 

matrices whose entkies a re  all polynomials and can be realized by a feedback 

free connection of delay elements. 

Motivated by the importance of feedforward inverse realizations for 

3 cncoders of convolutional codes Massey and Sain have derived a necessary 

and sufficient condition for the existence of such inverses in the case of feed- 

fonvard LSC's. Their concern with feedforward LSC's arose from the fact 

that convolutional encoders are LSC's of this type. In this chapter we will 

esTend their result to the entire class of linear sequential circuits. An inter- 

esting property of the extended inverse existence condition is that it specifies 

the inininium delay of any inverse circuit, feedforward o r  feedback, which may 

be realized. Furthermore, the existence condition given in this chapter incor- 

porates an implicit procedure for the construction of feedforward inverses with 

minimal delay. 

We begin our investigation of feedforward inverses for LSC's with the 

following conventions. Let H (D) represent the N x K transfer function matrix 

of some  physically realizable LSC with N outputs and K inputs. Without loss 

of generality it may be assumed that the numerator and denominator polyno- 

mials of the entries in H @) are relatively prime. Let the K dimensional 

column vector - I (D) be defined as the vector whose k-th component is the 

3J. L. Massey and M .  K. Sain, "Inverses of Linear Sequential Circuits", 
IEEE Transactions On Electronic Computers, Vol. C-17, April 1968, pp. 330- 
337. (See also "Postscript to Inverses of Linear Sequential Circuits", IEEE 
Transactions on Computers, Vol. C-17, Dec. 1968, pp. 1177). 
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D-transform of the k-th input sequence; k = 1, 2, 

an N-dimensional column vector whose n-th component is the transform of the 

n-th output sequence: n = 1, 2, * e * * N. 

function matrix is H (D) is in the zero initial state we have 

* K; and let T (D) be 
I 

Then if the LSC whose transfer 

- T @ ) =  €1 ( D ) I @ )  - (2) 

An LSC is invertible, possibly with delay, if and only if - I (D) can be uniquely 

recovered from - T (D). Clearly a necessary and sufficient condition for unique 

recovery is 

r a n k ( H ( D ) ) = K  (3) 

\\.here the entries in H (D) are considered as elements in the field of rational 

functions over G F  (q). Condition (3) requires that 

N 2 K .  (4) 

Since interest is confined to those LSC's which are invertible, condition (4) will 

be assumed in all that follows. 

If condition (3) holds there exists a K x N matrix R (D) of rational functions 

(not unique if N > K) such that 

(D) (D) = IK (5) 

where IK is the K x K identity matrix. Note that an R (D) which satisfies (5) 

may not be realizable since some entries or R (D) may have denominator poly- 

nomials which contain D as a factor. Again we assume that the numerator and 

denominator of each entry in R (D) are relatively prime. Let L be the greatest 

power of D which is a factor of a denominator polynomial. It is always possible 
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to obtain a transfer function matrix R'  (D) which is physically realizable by 

niultiplying R (D) by DL. 

R' p) = D~ R p) (6) 

With this definition of R' (D) and L, multiplication of both sides of (5) by DL 

gives 

\\-hich in turn from (2) implies 

I 

Hence, R (D) is the transfer function matrix of a realizable, delay L inverse 

for the LSC whose transfer function matrix is H 0). A transfer function 

matrix has a feedforward realization if and only if all its entries are polyno- 

mials rather than more general rational functions. Thus, the search for feed- 

? 
forward inverses is essentially the search for K X N matrices R (D) which 

satisfy Equation (8) and whose entries a re  all polynomials. 

Let Q (D) = Q, + Q1 D + e .  * * e + QmDm be the least common multiple 

(lcm) of the denominator polymonials of the entries of H (D). Since H (D) is 

characteristic of a realizable circuit, it follows that Qo Z 0. With Q 0) SO 

defined there exists an N x K matrix of polymonials 6 (D) such that 

H ( D ) = G @ ) / Q ( D )  * (9) 

N The matrix G (D) has (K) distinct K X K submatrices. Let 6 (D), denote the 

n-th K x K submatrix of 6 (D) and let 

addition, let C p), be the adjoint matrix of G (D), and let c.. (D)n; i = 1, 2, 

0 e e K; j = 1, 2, e a K; represent the polynomial entries in C (D)n. Each 

(D) be the determinant of G (D)n. In 

1J 
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2 C (D), has K2 entries which are the K cofactors of G 

entries c.. 
1.l 

N-K+l times. 

Note that the 

N (K); are not all distinct but each appears n = 1, 2, e e 

With these preliminaries completed, the main result of this chapter may 

be presented as the following theorem. 

4 Theorem 7 . 1  : An N-output, K-input linear sequential circuit with transfer 

function H (D) has a feedforward inverse if and only if 

where B(D) = gcd [Ai ( D q ;  i = 1, 2, e - * *  (K) N ; 

C ( D ) = g c d  c (D) ; i = l ,  2, 0 . 4 .  K; j = 1 ,  2, K ; n = l , 2 , * . .  (K); N 
C i j  n l  

L is an integer 2 0, B(D) is a polynomial with B(0) # 0, and Itgcdtl indicates 

"greatest common divisor". Moreover, there exists a feedforward inverse 

with delay exactly L and no inverse of any kind exists with delay less than L. 

Note that L < 0 can never occur since Q (0) # 0 and C (D) divides A@). 

The proof of Theorem 7 . 1  will be given in three parts, showing succes- 

sively the necessity, the sufficiency and the minimality of the delay L defined 

by condition (10). 

4The result of this theorem was communicated to Dr. G. D. Forney who sub- 
sequently gave an elegant algebraic proof using the Smith-McMillan canonical 
matrix expansion of the transfer function matrix H 0). See: 6. D. Forney, 
"Convolutional Codes I : Algebraic Structuret1, IEEE Transactions on Informa- 
tion Theory, Vol. IT-16, No. 6, Nov. 1970, to appear. 
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Proof of Necessity: Suppose (10) is not satisfied for  any L 2 0 and for any 

(0) # 0. Then 

(D) is a polynomial containing an irreducible factor, say m (D), such 

that deg m (D) 2 1 and m (0) # 0. But then A (D) also has m (D) as a 

factor. Let the multiplicity of m (D) as a factor of A 0) be & where 6 2 1. 

c 1  

Since both gcd 

the multiplicity of m (D) as a factor of gcd [A (D), Q (D)] and let A be the 

(D), Q (D)] and C (D) may have m (D) as a factor, let ,U be 

multiplicity of m (D) as a factor of C (D). Note that since & 2: 1, it follows 

is the multiplicity of m (D) as a factor of Q (D). Now both /4 2 0 and 

A 2 0  and by hypothesis a(D) has m (D) as a factor, therefore, the multiplic- 

ities satisfy 

d > p +  A .  (12) 

If C (D) has m A (D) as a factor, there exists some K X K submatrix of G (D) 

whose adjoint has a row in which the elements have a greatest common divisor 

divisible by m h  (D) but not by m (D). Let the submatrix whose adjoint 

contains this row be G (D), and let the adjoint matrix be C (D)n. Let the r-th 

row of C (D), contain an element which has m (D) as a factor of multiplicity 

Define the polynomial Pr (D). as the greatest common divisor of the K 

entries in the r-th row of C (D),. Then there exist polynomials Fi (D); 

i = 1, 2, e a e e e  K; such that 
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where the cri 

nomial vector, - P (D) = (PI (D), P2 (D) * * * e * 9  P K (D) ), from the following. 

are the entries in the r-th row of C (D)n. Define the poly- 

In (14) the polynomial vector, - F (D) = (F1 (D), F2 (D), * 0 * * ~ ~  FK (D)), is 

defined by (13). Premultiplication of both sides of (14) by G gives 

where I is the K x K identity matrix. K 

Now suppose that the K inputs to an LSC whose transfer function matrix is 

G (D) are given by 

Note that at least one input sequence defined by (17), namely the sequence cor- 

responding to 1, (D), has an infinite number of non-zero digits since Pr (D) and 

Q (D) have m (D) as a factor with respective multiplicities of exactly A and f i  . 
Solving (17) for Pi (D), the result is 

Pi (D) = I i  (D) (D)/Q (D) . (18) 

3 The following lemma due to Massey and Sain is useful in demonstration 

of the necessity of Condition (10). 

Lemma 7.1: 

index j ;  15 j 5 N; the j-th row of G (D) satisfies 

For any polynomial vector II P (D) satisfying (15) and for any 
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where the 6.. (D) a re  the entries in the j-th row of G (D) and Aj  @) is a 
J1 

polynomial. 

Substitution of (18) in (19) gives 

But the left hand side of (20) is 

where the H.. 0); i = 1, 2, . e . * )  K; a re  the entries in the j-th row of H (D). 
J1 

Thus 

Recall that A (D) contains a factor m (D) with multiplicity d and (12) 

states that d > f l  +A.  Therefore, m p+A+l (D) divides A@). It follows that 

T. (D) has only a finite number of non-zero digits for every j. Thus, by the 

following result of Massey and Sain , the LSC whose outputs are defined by 

(22) when the inputs a re  given by (17) has no feedforward inverse. 

J 
3 

Lemma 7.2: If for a given LSC there exists an input sequence with infinitely 

many non-zero digits such that the corresponding output sequence has only 

finitely many non-zero digits, then the LSC has no feedforward inverse, with 

delay o r  without delay. 



79 

L Consequently, when (10) is not satisfied (or a@) # D ) no feedforward 

inverse circuit exists. 

Proof of Sufficiency: Suppose that for a given LSC with transfer function 

matrix H (D) Condition (10) is satisfied for some L 2 0. Since A@) = 

gcd [Al (D), A, (D), e . * .  A N  (Dg , there exist polynomials Bi 0) such that 
7K) 

Therefore, by use of (16) 

But if Condition (10) is satisfied (24) gives 

i = l  

In addition, if - T (D)i is a vector of K output sequences corresponding to the 

rows used to  form G (D)i, it is clear that 

By use of (26) Equation (25) becorhes 
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Rut gcd p(D), Q (Dd divides Q (D) and C (D) divides each entry of C (D)i. 

Hence, we niay define the polynomial 

and define the matrix of polynomials 

Then Equation (27) becomes 

Now Equation (30) gives an implicit formulation for  the transfer function of 

an inverse LSC with delay, L. Note that each - T (D)i in the summation on 

the left hand side of (30) is multiplied by a K X K matrix of polynomials. 

Clearly, the summation of polynomials which multiply each transformed 

sequence T.  (D) results in a polynomial. It follows that the inverse con- 
J 

structed from (30) is a feedforward inverse. Thus, Condition (10) has been 

shown to be sufficient for the existence of a feedforward inverse LSC with 

delay L. 

It should be noted that (30) does not give a unique feedforward realiza- 

tion since the set of Bi (D) which satisfy (23) are  not unique. 

Proof of Minimal Delay: Condition (10) has been shown to be necessary and 

sufficient for the existence of a feedforward inverse LSC of delay L. To 

complete the proof of the theorem, it remains to show that no inverse with 

delay less than L exists. To aid in establishing this result the following 
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lemma where s i (t) is the vector of K inputs at time t and - t (t) is the vector of 

N outputs, is useful, 

Lemma 7.3: If for a given LSC there exists an input vector sequence with 

i (0) # 0 such that the corresponding output vector sequence has t (0) = t (1) = 

9 0 9  0 0  - t (L-1) = -J 0 then no inverse (of any kind) with delay less than L exists. 

- - - - 

Proof: Suppose the all zero vector sequence is applied to  an LSC in its zero 

state such that - i (t) = 0 for all t. The corresponding output vector sequence is 

also the all zero vector sequence and in particular, - t (0) = - t (1) = * * * e *  - t (L-1) 

= - 0. But if some other input vector sequence with - i (0) # - 0 also results in an 

output vector sequence such t h a t t  (t) = 0 for 0 5 t 5 L-1, then the output 

vector sequences are identical in the first L time units for two distinct input 

vector sequences, Clearly no inverse can differentiate between the two output 

vector sequences until t = L. Therefore, no inverse with delay less than L 

exists. Hence, the lemma is proved. 

It now suffices to show that, if Condition (10) is satisfied, there 

exists an input vector sequence for which - i (0) # - 0 and a corresponding 

output vector sequence such that (0) = (1) = e 0 0 .  = - t (L-1) = 9. To this 

end suppose Condition (10) is satisfied. Then A(D)/(gcd [A@), Q (Dg 

C (D)) has DL as a factor. Since Q (0) # 0, D does not divide gcd @@I), Q @Id, 

but may divide C (D). Therefore, let C (D) have D as a factor with multiplicity 

k 2 0. Proceeding as in the proof of necessity, there exists some C which 

contains a row, say the r-th, in which the entries have a greatest common 

divisor which is divisible by Dk. Let tbis greatest common divisor be Pr (D). 
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Define the polynomial vector, 9 P (D), as in Equation (14) and consider the func- 

tion, Pi (D) Q (D)/(gcd bo), Q (D)] C @I).). Observe that neither Q (D) nor 

gcd [ A  (D), Q @)] contains D as a factor. In addition, there exists some 

pi (D), namely Pr (D), which-has Dk as a factor. Since C (D) has D as a factor 

of multiplicity k, it follows that Pr 0) Q (D)/(gcd k(D), Q (D)] C (D)) does 

not contain D as a factor. Thus, if Ii @) is defined by 

it is seen that - i (0) # - 0 for the+transformed input sequences defined by (31). 

Now solution of (31) for Pi (D) and substitution in (19) gives 

But, by hypothesis, Condition (10) is satisfied for some L -0. > Therefore 

J 

B@> T j  (D) = (33) 

for all j. Since B(0) # 0 and Aj (D) is a polynomial for each j, it is clear that 

the output sequences corresponding to (33) have t (0) =t- (1) = - t (2) = * * = 

- t (L-1) = - 0. Hence, by Lemma 7.3 it is concluded that no inverse with delay 

less than L exists. Note that the delay which is defined by (10) is minimal 

over all classes of linear inverse circuits, not just feedforward inverses. It 

follows that no inverse of any kind with delay less than L exists. This com- 

pletes the proof of the theorem. 

The results embodied in Theorem 7.1 are threefold. First, the theorem 

gives a necessary and sufficient condition for *my LSC to have a feedforward 



83 

inverse. Secondly, an implicit procedure for the construction of feedforward 

inverses, when they exist, results from the proof of the theorem. 

trivial application of the construction procedure is given in Appendix A. 

Finally, the condition of the theorem defines the minimum delay L of any 

inverse, i. e., no inverse of any kind with smaller delay exists. 

A non- 



CHAPTER VIlI 

UPPER BOUNDS ON INVERSE DELAY 

In this chapter we consider upper bounds on inverse delay or on the integer 

L for  INV #L finite state machines. Bounds will be considered in terms of the 

order of the state set for the general class of FSM's as well as for the special 

case of binary machines. An upper bound on inverse delay for any invertible 

machine with N states i s  well known and can be obtained quite simply. It can 

be shown that every INV #L machine satisfies L 5. N(N-1)/2 as a direct conse- 

quence of Even's' test for IL and ILF behavior (see Chapter In). The least 

order of losslessness of an ILF machine M is given by the number of nodes on 

the longest chain of distinct compatible pairs (nodes) of distinct states on the 

invertibility test graph (ITG) for M. By Theorem 3.1 M is INV #L if and only 

if L is the least integer such that M is ILF of order L. 

bound on L for an N state, INV #L machine is given by the maximum possible 

number of distinct compatible pairs of distinct states on the ITG. Hence, for 

Clearly an upper 

any N state, INV #L machine, L < (!) = N(N-1)/2. We will show shortly that 

in the general case this is a tight upper bound, i. e., for every N these exist 

N state, INV #L machines with L = N(N-1)/2. 

It is possible, however, to improve on this bound in certain restricted 

cases. To accomplish this, we will make use of the following definition. 

'S. Even, "On Information Lossless Automata of Finite Order", IEEE 
Transactions on Electronic Computers, Vol. EC-14, August 1965, pp. 561-569. 

84 
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Definition 8.1: A state si is an n-lossless state if n is the least integer such 

that there exist no xn and un with different first letters such that A(si, xn) = 

A (Si, Un) 

We observe that every state on an INV #L FSM is n-lossless for some n < L+l 

and that there must exist at least one state that is (L+l)-lossless. 

state is n-lossless for some n, then L = n-1. 

If every 

Making use of Definition 8.1 we may state 

Lemma 8.1: If a strongly connected FSM M is INV #L for L 2 1 and if 

#X = #Y = q, then there exists no length L sequence of one-lossless states. 

Proof: The lemma follows directly from Theorem 2.1 since the existence of 

a sequence of one-lossless states of length L or  longer implies that for some 

(r L Z YL, #Sf (so, (r L -  ) - 1 where so is the first one-lossless state in the 

sequence. By Theorem 2.1 it follows that #Sf (s, yL) = 1 for every s 4 S and 

y E YL (5). Hence, either every state is one-lossless and L = 0 or  M is not L 

INV #L. 

In the case for which q is prime we may rephrase Lemma 8.1 to further 

restrict the length of any sequence of one-lossless states. For machines 

which satisfy the hypothesis of Lemma 8.1 with the added restriction that q is 

L prime we have by the corollary of Theorem 2.2 that #S, (s, y ) = qj for some 

j ,> 1 and for every s and yL. It follows that there can exist no sequence of 

one-lossless states of length longer than L-j on such machines. Hence, we 
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conclude that if a strongly connected FSM M is INV #L for L 21 and if 

#X = #Y = q for q a prime integer and if #Sf '(so, u L, = qj for some so and uL, 

then there can exist no sequence of one-lossless states of length longer than 

L-j. 

W e  turn now to the primary consideration of this chapter, i. e., upper 

bounds on inverse delay. For the restricted, but important, class of binary 

machines which satisfy 

MAX #Sf (s, yL) = 2 
S, YL 

it is possible to derive a tight upper bound on inverse delay which increases 

only linearly with the order of the state set. To aid in the derivation we make 

use of the following two results. 

Lemma 8.2: If an FSM M is IL and if #X = #Y = q, then for every n 2 0 

Proof: Let si and an satisfy 

#Xn (si, an) = MAX #Xn (s, y") = . 
s, Yn 

Since #X = q we may state 

#X"+l (Si, an  y) = q K, . 
Y 

However, since #Y = q it follows that 

MAX #Xn+l (si, 
Y 
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But it is always true that 

MAX #Xncl (si, y) - < MAX #Xn+' (s, y"") . 
Y s, ynfl 

Hence, it follows that 

and from the IL property we may conclude 

MAX #Sf (s, y") 5 MAX #Sf ( s ,  y"") . 
s ,  Y" s, y"+l 

Therefore, the lemma is proved. 

Another useful preliminary result is given as 

Lemma 8 . 3 :  If M is a binary, INV #L FSM which satisfies 

L -  MAX #Sf (s ,  Y ) - 2, 
s, YL 

then no state which initiates a length L sequence of one-lossless states can be 

included in any compatible pair on the ITG for M. 

Proof: Suppose state si is the first state in a length L sequence of one-lossless 

states. Suppose further that si is included in some compatible pair on the ITG 

for M. Let (si, sk) be this compatible pair. Let n be the least integer such 

that there exists so and 0" such that both si and Sk e Sf (so, an).  Since L, n, 

it follows from the hypothesis of the theorem and from Lemma 8 .2  that 

") = 2. Since si is one-lossless, there must exist such that both 

si and Sk E si (8). Hence, L12n+l and #sf (so,  an^) = 2. Consequently, sk 

is a one-lossless state also. Since si is the first state in a length L sequence 



88 

of one-lossless states, there exists a successor of Si that is one-lossless and 

on the assumed length L sequence of one-lossless states. Let this successor 

be d(Si, a). But sf (SO, CY" y) = 2 for every y. Hence, there exists a suc- 

cessor of Sk, say d(sk, b), such that both (si, a) a d  d(Si, b) Q Sf (SO, u y )  
- 

or  f l  since M is binary. However, because b(si, a) is one- 

lossless it follows that L ,> n+2 and consequently that #Sf (SO, an ?,) = 2 for 

every y and that there exists a successor of d (si, a) that is one-lossless. 

Clearly a continuation of the indicated arguments yields the conclusion that 

L,n+m for arbitrarily large m. Therefore, no state which initiates a length 

L sequence of one-lossless states can be included in a compatible pair on the 

ITG for M and the lemma is proved. 

Based on the preceding two preliminary results it is possible to show an 

upper bound on inverse delay for the class of machines considered. 

Theorem 8.1: If M is an N state, binary, INV #L FSM which satisfies 

MAX #Sf (s, yL) = 2, 
S, YL 

then L 5 N/2. 

Proof: The fact that M is INV #L implies that there exists SO CE S and aL = 

al a2 e .  a a e aL and bL = b l  b2 e a e e a bL with a1 # b l  such that A(s0, a L ) = 

A(s0, bL). Suppose L > N/2. This requires that at least one of the following 

conditions is satisfied for i < j <L. 
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The first two conditions differ only in an arbitrary assignment of input labels. 

Consequently, we need not consider condition (2). A similar conclusion is 

reached by comparison of conditions (3) and (4). Hence, we need not consider 

condition (4). 

Suppose condition (1) holds. Since M is binary and since 

MAX #Sf (s, yL) = 2, 
S, Y L  

it follows from Lemma 8.2 that all states d (so, al a2 ak) and 

6 (so, bl bg . * * *  bk) are one-lossless for every k; 1 _. < k < L. In addition, 

since d (so, al a2 e a 0 ai) = d (so, al a2 aj), there exists an infinite 

length sequence of one-lossless states starting from state (so, ax). But 

6 (so, ai) and d(s0, bl)  form a compatible pair on the ITG for M. Hence, by 

Lemma 8.3, M is not INV #L for any L. 

Suppose condition (3) holds. This case is illustrated in Figure 8.1. 

FIGURE 8.1 - TWO LENGTH L STATE SEQUENCES WITH COMMON 
OUTPUT LABELS AND A COMMON INCLUDED STATE 

We note that it is not possible that i = j since this implies that M is not IL. By 

the same arguments as were  employed in the case of condition (1) it follows 
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that 6 (so, al a2 0 . 0  e ak) and b (so, b l  b2 e 0 bk) are one-lossless states for  

every k; 1 - < k < L. But then, since Q (so, % 0 e * 0 ai) = d (SO, b l  bg 0 e bj), 

we have that b ( 8 (so, b l  b2 e * 0 bj), ai+l ai+2 

for every k; i+l 5 k < L. 

0 ak) is a one-lossless state 

But this implies that there exists a sequence of 

one-lossless states of length L+j-i starting from state d (so, bl). 

the length of the sequence i s  greater than L. 

8 (so, bl) ) is a compatible pair on the ITG for  M. 

is not INV #L. 

with the hypothesis of the theorem and it follows that L 5 N/2. 

Since j > i 
By construction ( 6  (so, al), 

Hence, by Lemma 8.3, M 

Consequently, neither conditions (1) nor (3) are compatible 

The bound on inverse delay for machines satisfying the conditions of 

Theorem 8.1 is tight since we can show examples of such machines which 

satisfy L = N/2 for any L. The N state machine defined by the state transi- 

tion table of Figure 8.2 meets the bound with equality. 

s\" 0 1 

52 

54 

f 
i 

"i 

%+I 
0 

0 

m 
0 

"N-3 

*h 

FIGURE 8.2 - A BINARY, INV #L, N STATE FINITE STATE MACHINE 
WITH L = N/2 AND MAX #Sf (s, yL) = 2 

s,  YL 
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W e  observe that machines defined as in Figure 8 .2  are strongly connected. 

Hence, it is possible to find a strongly connected, binary, INV #L machine 

with 2L states for every integer L. We remark further that it is possible to 

show the existence of such machines with 2L states with MAX #sf (s, yL) = 2 j  
s, YL 

for j = 2 as well as for j = 1. The series of binary, strongly connected invert- 

ible machines defined as in Figure 8 . 3  satisfy #Sf (s, yL) = 4 and L = N/2 for 

every L = 2, 3, 4, 0 0 0 0 e . We have been unable to find such examples satis- 

fying #sf (s, yL) = 2j  and L = N/2 for j - > 3, however, 

In general, the bound on inverse delay for binary, strongly connected, 

invertible machines appears to depend on #Sf (s, yL). It is conjectured that 

the tightest possible bound on inverse delay for such machines is given by 

L < N/2 - 2j-1 + j 

L -  j where N = #S and #Sf (s, y ) - 2 . 

W e  have no proof of this suspected upper bound as yet. It can be seen that for 

which is consistent with our j = 1, 2 the conjectured bound reduces to L -N/2 < 
previous results and examples. For j = 3, 4 several examples have been 

found for which L meets the conjectured bound with equality. No binary, 

strongly connected machines have been found such that L exceeds the bound, 

however. 

For more general classes of invertible finite state machines we assert 

that it is possible to meet the bound on inverse delay L = (;) with equality if 

arbitrary orders of input and output alphabets are allowed. For any N, 
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> 4  

L = 4  
1 

“2 

“3 

“4 

“5 

“6 

“7 

L even 
1 

ai = 1 for i odd 
0 .  = 0 for i even 

i = 1 , 2 , 3 ,  .... 1-2 
2 
- 

1-3 i = 1 , 2 , 3 ,  . . e .  - 
2 

FIGURE 8 . 3  - BINARY, INV #L, STRONGLY CONNECTED FINITE STATE 
MACHINES SATISFYING #Sf (s, yL) = 4 AND 

L = N / 2  FOR L = 2 ,  3, 4, * * e *  
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examples may be constructed which show the validity of this assertion. More- 

over, it is possible to  demonstrate a general form for finite state machines 

which satisfy L = t2)  for any N. One such trivial, but valid, construction is 

given in Figure 8.4. The 2N undefined transitions on the right hand side of 

the state transition diagram of Figure 8.4 may be labelled with any of the N 

states. The 2N output labels corresponding to unlabelled transitions should all 

be distinct and not appear anywhere else on the diagram. Since the machine of 

Figure 8.4 is INV #(2) and has N states we have shown by construction that 

N 

Theorem 8.2: For every N there exists an INV #L finite state machine with 

N states such that L = ( 2),  N 

Finite state machines formulated in the manner of Figure 8.4 satisfy 

#X = N+1 and #Y = (;) + 2N. It is expected that more economical (in terms of 

input and output set orders) realizations of machines which satisfy L = tN) may 

be found. It is possible, for instance, to construct an INV #3 binary input, 

ternary output machine with three states. The state transition diagram for 

such a machine is shown in Figure 8.5. 

2 

We present in this chapter one more result; a result which gives a neces- 

sary condition for any FSM to be INV #L for L > N. We state this condition as 

Theorem 8.3: 

can exist no SO 

If M is an INV #L finite state machine with L > N, then there 

S and aL = a1 a2 0 0 0 aL and bL = bl b2 e 0 e e bL with al # bl 

L and such that (so, a ) = A(so, bL) = L 
every i, j satisfying i .( j - < L. 



94 

4 

z 

z 

r( 

A 

ea A 

m 

. . . . . . . . . . . 
In 

c3 

d 

y 

\ d 

m 

m 

T 
T 

I 
y$ fA e m 

z 
m m 

z m 



95 

0 1 

FIGURE 8 . 5  - A THREE STATE, INV #L FSM WITH L = 3 = (;) 

Proof: 

SO, aL and bL a s  defined in the statement of the theorem. 

Suppose M is INV #L with L >N. Suppose further that there exist 

Since L > N, it 

follows that both 6 (so, al a2 e @ ai) = 6 (so, a1 a2 e e aj) and 

W g ,  bl b2 . * * .  bn) = d(so, bl b2 - * a =  bm) for some i < j < L  and 

n < m - < L. But this implies that the output sequence A(so, al a2 * 0 e ai 

ai+2 0 e e * T ) ~ )  coincides with the first i + (j-i)k letters of the output 

bn (bn+l bn+2 bm)t) for some arbitrarily 

It follows that M is 

sequence A (so, b l  b2 e 0 

large k and for any t such that n + (m-nf 2 i + (j-i)k. 

not INV #L for any L. 

In this chapter we have presented several results concerning upper bounds 

on inverse delay. We remark in conclusion, however, that a satisfactory 

upper bound on L for the general class of INV #L finite state machines has not 

been obtained. Such a bound should be based on the size of input and output 

alphabets as well as on the order of the state set. 

i f  attention is limited to binary machines a tight upper bound on L has not a s  

yet been derived. We believe that in the binary case this bound will vary only 

linearly with the order of the state set. 

We remark also that even 



CHAPTER IX 

CONCLUSION§ AND RECOMMENDATIONS FOR CONTINUED RESEARCH 

Chapters I through VIII contain many rather diverse results concerning 

the invertibility of finite state machines and of some special classes of such 

machines. Although many results are given in these chapters, it is apparent 

that several important questions remain unanswered. Continued research 

could be profitable in several of the areas which were considered. This final 

chapter will  summarize the main results which were obtained and point out 

certain of the more important remaining unsolved problems. 

In Chapter I a very general inverse definition was considered. Delay L 

inverses were defined with respect to a particular state. Necessary and suf- 

ficient conditions for the existence of such inverses were given. Certain 

characteristics of finite state machines which have inverses were shown. An 

inverse construction procedure applicable to any FSM for which an inverse 

exists was presented. A s  a consequence of the construction an upper bound on 

the number of states in the minimal inverse was derived. The bound appears 

quite loose, however, and further research should yield an improved upper 

bound. 

A more restricted class of inverses was considered in Chapter 11. An 

FSM is said to have a general delay L inverse if it has a delay L inverse with 

respect to every state. An FSM is INV #L if L is the least integer such that 

there exists a general delay L inverse. Finally, a machine is invertible if it 
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is INV #L for some L. Attention in Chapter II was confined to the class of 

strongly connected FSM's with common input and output set orders (#X = #Y). 

The main results of Chapter I1 are embodied in the derivation of several strue- 

tural properties of invertible FSM's of the class considered. These properties 

concern the size of certain final state sets (Sf (s, yn) ) and output sequence sets 

(Yn (s) ) defined as in Chapter I. A certain uniformity in the order of these 

sets for invertible machines was demonstrated. Further investigation of the 

relationships among the cardinalities of these and other sets defined as in 

Chapter I may yield some interesting results. 

Chapter 11 also presents a necessary and sufficient condition for strongly 

connected FSM's with #X = #Y to be INV #L. It was shown that such machines 

are INV #L if and only if for every output sequence 

exists a state in every final state set of the form, Sf (s, yL), which allows y". 

and for any n there 

The concepts of information losslessness (IL) and information losslessness 

of finite order as established by Huffman were considered in Chapter III. Rela- 

tions between these concepts and the notions of invertibility given in Chapters I 

and II were given. A necessary and sufficient condition for a strongly con- 

nected machine with #X = #Y to be IL was shown. This condition is similar to  

the condition shown to be necessary and sufficient for the INV #L property but 

is weaker in that it is only required that for any output sequence y" for any n 

there exists a state that allows yn. 

Chapter III presents an upper bound on the least integer n such that if an 

N state FSM is not IL, then there exists a state so and input sequences an # bn 
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such that both (SO, bn). The bound 

was given as n Chapter III also considers bounds on the greatest 

integer n such that every output sequence yn is allowed on an N state, strongly 

connected, non-IL FSM with #X = #Y. 

torily, however, and the need for further work in the derivation of a good bound 

is indicated. 

(so, an) = h(so, bn) and 

(!) + 1. 

The problem was not solved satisfac- 

A new type of state equivalence, namely, "output equivalence", was pre- 

sented in Chapter IV. 

deletion of output equivalent states preserves invertibility and in some cases 

information losslessness. In addition, it was shown that, for a certain class 

of machines, important structural properties are preserved under state 

reduction of output equivalent states. 

invertible machines with #X = #Y, the order of the final state set, #Sf (s, yn), 

is invariant under state minimization for any n. 

although inverse delay may not be preserved by the reduction of output equiva- 

lent states, there exists at least one output minimal version which is INV #L if 

the original machine is INV #L. 

It was shown that state reduction resulting from the 

In particular, for strongly connected, 

It was further shown that, 

It is considered quite possible that further study of the relationships 

between IL and invertible finite state machines and their output minimal ver- 

sions will provide some important results. Moreover, the output equivalence 

relation itself and the partitions n n  generated by successive application of 

n - output equivalence relations; n = 1, 2, 3, 0 * 0 0  0 ; to the state set appear 

worthy of further study. In particular, an upper bound on the integer n such 

# nn is considered a worthwhile objective for continued research. 
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The class of finite input memory p(FIM ( p ) )  machines was considered in 

Chapter V. Several structural properties which pertain specifically to FIM ( 

non-degenerate, maximal state, invertible machines were shown. A uniformity 

in the number of states which allow any given output sequence of length n 2. L 

was demonstrated. In addition, it was shown for any n and any length n output 

sequence yn, that the same number of distinct pairs of initial states and length 

n input sequences yield the output sequence yn. 

Several properties of the output function associated with FIM, non- 

degenerate, invertible machines were considered. Sufficient conditions for an 

output function to be characteristic of a binary, FIM, non-degenerate, invertible 

machine were given. 

behavior. An important unsolved problem and one which merits continued 

investigation consists of the extension of these conditions to show both neces- 

sity and sufficiency. 

Similar conditions were given for IL but not invertible 

In Chapter VI the invertibility of finite output memory jf(FOM ( N ) )  

machines was investigated. A necessary and sufficient condition for a non- 

degenerate, FOM machine to be information lossless was given. It was 

concluded that for non-degenerate FOM machines, the IL property implies 

invertibility . 
Hence, FOM machines which are ' INV #L for L 2 1 do not exist. 

Moreover, the IL property implies an instantaneous inverse. 

Chapter W considered the class of linear sequential circuits (LSC's). A 

problem related to the existence of a special class of inverse LSC's was 
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investigated. A necessary and sufficient condition for the existence of feed- 

forward inverses for the general class of ZSC's was derived. A procedure for 

the construction of feedforward inverses, when they exist, results from the 

constructive proof of sufficiency. In addition, it was shown that the inverse 

delay resulting from such a construction is minimal over all classes of in- 

verses. The material contained in Chapter VII is basically an extension of a 

result due to Massey and Sain who derived a similar condition for the class of 

feedforward LSC's. 

The question of upper bounds on L for INV #L machines was considered in 

Chapter VIII. By restriction to binary machines with maximum final state set 

order two, it was possible to show that L <N/2, where N is the order of the 

state set, is a tight upper bound on inverse delay. It is conjectured that the 

upper bound on inverse delay for any binary machine grows only linearly with 

N and that, in  general, the bound decreases with increasing final state set 

order. It was shown in Chapter Wr that the N/2 bound can be achieved with 

equality for strongly connected, binary machines with maximum final state set 

orders two and four. No such strongly connected examples were found, for 

larger final state set orders, however. The derivation of an upper bound on 

inverse delay which grows only linearly with N for either the general class of 

binary machines o r  the class of strongly connected binary machines remains 

an important unsolved research problem. 

It is noted in Chapter vD[I that if the orders of input and output alphabets 

ssible to construct machines which are INV #L for a re  arbitrary then it is 
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L = (i). Hence, this well known upper bound on L is tight for the general class 

of finite state machines. It is implied, however, that the maximum inverse 

delay depends not only on the order of the state set, but on the orders of in 

and output alphabets as well. It is conjectured that a tight bound on L for the 

general class of INV #L FSM's will include all three quantities. 

In conclusion, one more unsolved problem for continued research is noted. 

This problem consists of the determination of an upper bound on L for INV #L, 

FIM (p) machines. The bound is evidently given by L Y. At present this 

is only conjecture, however e 



APPENDIX A 

EXAMPLE O F  FEEDFORWARD INVERSE CONSTRUCTION 

Consider the four output, three input, binary LSC with transfer function 

matrix 

H ( D )  = 

D2 + D  1 1 

0 D 1 

D2 + D  1 1/00 + 1) 

- 1 D + 1  0 - 
The matrix H (D) has rank three over the field of rational functions over G F  (2). 

It follows that H (D) is  invertible. However, the question of feedforward in- 

verse existence is not immediately answered. Inversion of any 3 x 3 submatrix 

of H (D) does not directly yield an inverse with feedforward realization. In 

order to test for the existence of such an inverse we make use of Equation (10) 

of Chapter VII. By direct computation of the elements of Equation (10) we have 

Q (D) = lcm [denominator polynomials of H (D)] = D + 1, 

A ( D )  = gcd [Ai (Dq = D 2 + 1 ;  i =1, 2, 3, 4 , 
C(D) = gcd E.. 

1J 
= D + 1 ;  i = l ,  2, 3; j = 1 ,  2, 3 , ;  n = l ,  2, 3, 4, 

and gcd [Id@), Q (Dq = D + 1. 

Evaluation of the left hand side of Equation (10) yields 

Therefore, a feedforward inverse does exist. Since L = 0, the inverse delay 

is zero. 
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The inverse may be constructed by utilization of Equation (30) of Chapter 

W or 

Proceeding with the computation of the elements of the above we note that 

B (D) = 1 has already been determined. Q' (D) can be found from 

The four 3 x 3 submatrices of G (D) have determininants given by 

AI ( D ) = D 6 + D 5 + D 4 + D 3 ;  rows 1, 2, 3 ,  

A, (D) = D6 + D5 + D4 + D2 + D + 1 ; rows 1, 2, 4 , 
A 3 ( D ) = D 6 + D 3 + D 2 + D ;  rows 1, 3, 4 ,  

A, (D) = D6 + D5 + D  + 1 ; rows 2, 3, 4 . 

The row designations given for the A i  (D); i = 1, 2, 3, 4; define the rows of 

G (D) = H (D) /Q (D) used to form G 

which satisfy Equation (23) of Chapter VII is given by 

A possible set of polynomials Bi (D) 

B4 @) = D2 + 1 . 



The reduced adjoint matrices C' (D)i defined by Equation (29) of Chapter 

for i = 3 and i = 4 are given by 

c' (D)3 = 

- 
D + l  

1 

D2 + 1  

D + l  

- 
D + l  D2 + 1  

1 D + l  

1 

D3 + D ~  

D4+D2 . 

1 

Note that it is not necessary to compute C' 

B2 (D) = 0. Since B(D) = Q' (D) = 1, the inverse matrix R' (D) can be 

obtained by summing the entries in B3 (D) C' 

relate particular inputs and outputs. The result of the summation in this case 

and C since B1 (D) = 

and B4 (D) C' D4 which 

is 

R' (D) = 

- - 
D3 + 1 D 3 + D 2 + D + l  D 3 + D  D3+D+31 

D ~ + D + I  D2 + 1 D2 + D  D2 + D  

- D6 + D4 + D + 1 D6 + D5 + D3 + 1 D6 + D3 + D2 + 1 De + D2 .-. * 

Since all entries in R' (D) are polynomials, the inverse has a feedforward 

realization. 
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